Heba Abd El-Aziz, Nada E Hammouda, Fathallah Belal, Heba Samir Elama
{"title":"Eco-Friendly Analytical Approach for Sensitive Spectrofluorimetric Determination of the Flavonoid Chrysin in Capsules and Human Plasma.","authors":"Heba Abd El-Aziz, Nada E Hammouda, Fathallah Belal, Heba Samir Elama","doi":"10.1007/s10895-024-03962-9","DOIUrl":null,"url":null,"abstract":"<p><p>Chrysin is a plant flavonoid that has different therapeutic effects as anti-inflammatory, anti-cancer, anti-oxidant, and immune booster. Spectrofluorimetry has received a lot of interest lately because of its ecological greenness and analytical performance. This approach employed the native fluorescence of chrysin at 339 nm following excitation at 231 nm in distilled water. Modern advances in analytical chemistry have been used to lessen occupational and environmental concerns by employing distilled water as a dilution solvent through method development and application. The approach was found to be excellent green supported by eco-scale score of 97 and 0.94 AGREE rating, in addition to an overall whiteness score of 88.80. The design aimed to analyze chrysin in raw materials, Chrysin® capsules and human plasma. The method was linear over 0.5-7.0 ng mL<sup>⁻1</sup> chrysin, with LOD of 0.06 ng mL<sup>⁻1</sup> and LOQ of 0.20 ng mL<sup>⁻1</sup>. The offered method was effectively applied for determination of chrysin in the commercial capsules Chrysin® and spiked human plasma samples with average recoveries of 99.76% and 99.98%, respectively for capsules and spiked human plasma. Up to date, no spectrofluorimetric method has been described for chrysin analysis, then, this presented an opportunity to develop a sensitive, quick, reliable, environmentally friendly, and valid fluorescence-based method.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03962-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chrysin is a plant flavonoid that has different therapeutic effects as anti-inflammatory, anti-cancer, anti-oxidant, and immune booster. Spectrofluorimetry has received a lot of interest lately because of its ecological greenness and analytical performance. This approach employed the native fluorescence of chrysin at 339 nm following excitation at 231 nm in distilled water. Modern advances in analytical chemistry have been used to lessen occupational and environmental concerns by employing distilled water as a dilution solvent through method development and application. The approach was found to be excellent green supported by eco-scale score of 97 and 0.94 AGREE rating, in addition to an overall whiteness score of 88.80. The design aimed to analyze chrysin in raw materials, Chrysin® capsules and human plasma. The method was linear over 0.5-7.0 ng mL⁻1 chrysin, with LOD of 0.06 ng mL⁻1 and LOQ of 0.20 ng mL⁻1. The offered method was effectively applied for determination of chrysin in the commercial capsules Chrysin® and spiked human plasma samples with average recoveries of 99.76% and 99.98%, respectively for capsules and spiked human plasma. Up to date, no spectrofluorimetric method has been described for chrysin analysis, then, this presented an opportunity to develop a sensitive, quick, reliable, environmentally friendly, and valid fluorescence-based method.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.