Hybrid grain production in wheat benefits from synchronized flowering and high female flower receptivity.

IF 5.6 2区 生物学 Q1 PLANT SCIENCES Journal of Experimental Botany Pub Date : 2024-10-23 DOI:10.1093/jxb/erae430
Constanze Schmidt, Valentin Hinterberger, Norman Philipp, Jochen C Reif, Thorsten Schnurbusch
{"title":"Hybrid grain production in wheat benefits from synchronized flowering and high female flower receptivity.","authors":"Constanze Schmidt, Valentin Hinterberger, Norman Philipp, Jochen C Reif, Thorsten Schnurbusch","doi":"10.1093/jxb/erae430","DOIUrl":null,"url":null,"abstract":"<p><p>The performance of plant hybrids relative to line breeding types is generally associated with higher yields, better adaptation, and improved yield stability. In bread wheat (Triticum aestivum L.), however, a broad commercial success for hybrids has not been accomplished until now largely due to the low efficiency of hybrid grain production, which is highly attributable to its self-pollinating nature. To better understand how hybrid wheat grains can be produced more effectively, we investigated the influence of synchronized flowering between female, i.e. male-sterile, lines and their male cross-pollinator lines as well as of the duration of flowering on hybrid grain production. We found that synchronization of flowering in combination with the longest possible temporal overlap had the largest positive effect on hybrid grain production. However, despite sufficient spatial and temporal synchronization of flowering, we also found that some female lines had lower hybrid grain set than others, suggesting genetic differences in female floral receptivity. To better assess female receptivity, we established a new phenotyping scale of male-sterile wheat flowers that provides the floral basics for effective cross-pollination. Applying this scale in our field and greenhouse trials revealed that better performing female lines remained longer in the pollen-receptive phase.</p>","PeriodicalId":15820,"journal":{"name":"Journal of Experimental Botany","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jxb/erae430","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of plant hybrids relative to line breeding types is generally associated with higher yields, better adaptation, and improved yield stability. In bread wheat (Triticum aestivum L.), however, a broad commercial success for hybrids has not been accomplished until now largely due to the low efficiency of hybrid grain production, which is highly attributable to its self-pollinating nature. To better understand how hybrid wheat grains can be produced more effectively, we investigated the influence of synchronized flowering between female, i.e. male-sterile, lines and their male cross-pollinator lines as well as of the duration of flowering on hybrid grain production. We found that synchronization of flowering in combination with the longest possible temporal overlap had the largest positive effect on hybrid grain production. However, despite sufficient spatial and temporal synchronization of flowering, we also found that some female lines had lower hybrid grain set than others, suggesting genetic differences in female floral receptivity. To better assess female receptivity, we established a new phenotyping scale of male-sterile wheat flowers that provides the floral basics for effective cross-pollination. Applying this scale in our field and greenhouse trials revealed that better performing female lines remained longer in the pollen-receptive phase.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小麦杂交种的谷物产量得益于同步开花和雌花受精率高。
与品系育种类型相比,植物杂交种的表现通常与产量更高、适应性更强和产量稳定性更好有关。然而,在面包小麦(Triticum aestivum L.)中,杂交种至今尚未取得广泛的商业成功,这主要是由于杂交种谷物生产效率较低,这在很大程度上归因于其自花授粉的特性。为了更好地了解如何更有效地生产杂交小麦谷粒,我们研究了雌性(即雄性不育)品系与其雄性异花授粉品系之间同步开花以及开花持续时间对杂交谷粒产量的影响。我们发现,同步开花与尽可能长的时间重叠相结合,对杂交谷物产量的积极影响最大。然而,尽管花期在空间和时间上充分同步,我们也发现一些雌性品系的杂交结实率低于其他品系,这表明雌花接受能力存在遗传差异。为了更好地评估雌花接受能力,我们建立了一种新的雄性不育小麦花表型尺度,为有效异花授粉提供了花的基本要素。在我们的田间和温室试验中应用该量表后发现,表现较好的雌花品系在花粉接受期停留的时间更长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Experimental Botany
Journal of Experimental Botany 生物-植物科学
CiteScore
12.30
自引率
4.30%
发文量
450
审稿时长
1.9 months
期刊介绍: The Journal of Experimental Botany publishes high-quality primary research and review papers in the plant sciences. These papers cover a range of disciplines from molecular and cellular physiology and biochemistry through whole plant physiology to community physiology. Full-length primary papers should contribute to our understanding of how plants develop and function, and should provide new insights into biological processes. The journal will not publish purely descriptive papers or papers that report a well-known process in a species in which the process has not been identified previously. Articles should be concise and generally limited to 10 printed pages.
期刊最新文献
Gibberellins: Extending the Green Revolution. Investigating biological nitrogen fixation via single-cell transcriptomics. TORquing chromatin: the regulatory role of TOR kinase on chromatin function. Innovative modeling on the effects of low-temperature stress on rice yields. Accounting for the impact of genotype and environment on variation in leaf respiration of wheat in Mexico and Australia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1