Guilherme Bento Sperandio, Reynaldo Magalhães Melo, Taísa Godoy Gomes, Robert Neil Gerard Miller, Luis Henrique Ferreira do Vale, Marcelo Valle de Sousa, Carlos André Ornelas Ricart, Edivaldo Ximenes Ferreira Filho
{"title":"Exploring the Synergistic Secretome: Insights from Co-Cultivation of <i>Aspergillus brasiliensis</i> and <i>Trichoderma reesei</i> RUT-C30.","authors":"Guilherme Bento Sperandio, Reynaldo Magalhães Melo, Taísa Godoy Gomes, Robert Neil Gerard Miller, Luis Henrique Ferreira do Vale, Marcelo Valle de Sousa, Carlos André Ornelas Ricart, Edivaldo Ximenes Ferreira Filho","doi":"10.3390/jof10100677","DOIUrl":null,"url":null,"abstract":"<p><p>The spectrum of enzymes required for complete lignocellulosic waste hydrolysis is too diverse to be secreted by a single organism. An alternative is to employ fungal co-cultures to obtain more diverse and complete enzymatic cocktails without the need to mix enzymes during downstream processing. This study evaluated the co-cultivation of <i>Aspergillus brasiliensis</i> and <i>Trichoderma reesei</i> RUT-C30 in different conditions using sugarcane bagasse as the carbon source. The resulting enzymatic cocktails were characterized according to the impact of strain inoculation time on enzymatic activities and proteome composition. Data revealed that the profile of each enzymatic extract was highly dependent on the order in which the participating fungi were inoculated. Some of the co-cultures exhibited higher enzyme activities compared to their respective monocultures for enzymes such as CMCase, pectinase, β-glucosidase, and β-xylosidase. Analysis of the <i>T. reesei</i> RUT-C30 and <i>A. brasiliensis</i> co-culture secretome resulted in the identification of 167 proteins, with 78 from <i>T. reesei</i> and 89 from <i>A. brasiliensis</i>. In agreement with the enzymatic results, proteome analysis also revealed that the timing of inoculation greatly influences the overall secretome, with a predominance of <i>T. reesei</i> RUT-C30 proteins when first inoculated or in simultaneous inoculation.</p>","PeriodicalId":15878,"journal":{"name":"Journal of Fungi","volume":"10 10","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509050/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fungi","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/jof10100677","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The spectrum of enzymes required for complete lignocellulosic waste hydrolysis is too diverse to be secreted by a single organism. An alternative is to employ fungal co-cultures to obtain more diverse and complete enzymatic cocktails without the need to mix enzymes during downstream processing. This study evaluated the co-cultivation of Aspergillus brasiliensis and Trichoderma reesei RUT-C30 in different conditions using sugarcane bagasse as the carbon source. The resulting enzymatic cocktails were characterized according to the impact of strain inoculation time on enzymatic activities and proteome composition. Data revealed that the profile of each enzymatic extract was highly dependent on the order in which the participating fungi were inoculated. Some of the co-cultures exhibited higher enzyme activities compared to their respective monocultures for enzymes such as CMCase, pectinase, β-glucosidase, and β-xylosidase. Analysis of the T. reesei RUT-C30 and A. brasiliensis co-culture secretome resulted in the identification of 167 proteins, with 78 from T. reesei and 89 from A. brasiliensis. In agreement with the enzymatic results, proteome analysis also revealed that the timing of inoculation greatly influences the overall secretome, with a predominance of T. reesei RUT-C30 proteins when first inoculated or in simultaneous inoculation.
期刊介绍:
Journal of Fungi (ISSN 2309-608X) is an international, peer-reviewed scientific open access journal that provides an advanced forum for studies related to pathogenic fungi, fungal biology, and all other aspects of fungal research. The journal publishes reviews, regular research papers, and communications in quarterly issues. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on paper length. Full experimental details must be provided so that the results can be reproduced.