Molecular Mechanism Analysis of Intensive Light-Induced Retinal Damages.

IF 1.4 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of lasers in medical sciences Pub Date : 2024-09-24 eCollection Date: 2024-01-01 DOI:10.34172/jlms.2024.47
Mohammad Rostami Nejad, Zahra Razzaghi, Reza M Robati, Babak Arjmand, Mostafa Rezaei-Tavirani, Maryam Hamzeloo-Moghadam, Aliasghar Keramatinia
{"title":"Molecular Mechanism Analysis of Intensive Light-Induced Retinal Damages.","authors":"Mohammad Rostami Nejad, Zahra Razzaghi, Reza M Robati, Babak Arjmand, Mostafa Rezaei-Tavirani, Maryam Hamzeloo-Moghadam, Aliasghar Keramatinia","doi":"10.34172/jlms.2024.47","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> The retina is a light-sensitive tissue, and intensive light exposure leads to light-induced retinal damage. It is pointed out that photoreceptor damage is responsible for the decrease in retina function. The aim of this study was to detect the main genes and biological terms which are involved in retinal response to intensive light exposure. <b>Methods:</b> The effect of intensive light on the mouse retina function was searched in the Gene Expression Omnibus (GEO) database. The data of GSE22818 were assessed by the GEO2R program. The significant differentially expressed genes (DEGs) were determined and evaluated via directed protein-protein interaction (PPI) network analysis. The critical significant DEGs were enriched via gene ontology analysis to find the related biological processes, molecular function, and biochemical pathways. <b>Results:</b> Data analysis indicates that the high intensity of light induces gene expression alteration in the retina. 105 significant DEGs were identified as the main responsive genes to light damage in the retina. STAT3, JUN, IL6ST, SOCS3, ATF3, JUNB, FOSL1, CCL2, ICAM1, FGF2, AGT, MYC, LIF, CISH, and EGR1 were introduced as the critical affected genes. STAT3, JUN, IL6ST, SOCS3, and ATF3 and \"Positive regulation of the receptor signaling pathway via JAK-STAT\" were highlighted as the key elements of molecular events. <b>Conclusion:</b> It can be concluded that regulation of the key DEGs and the dependent biological terms can effectively provide tools to prevent the development of light-induced retinal damage.</p>","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":"15 ","pages":"e47"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499960/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2024.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The retina is a light-sensitive tissue, and intensive light exposure leads to light-induced retinal damage. It is pointed out that photoreceptor damage is responsible for the decrease in retina function. The aim of this study was to detect the main genes and biological terms which are involved in retinal response to intensive light exposure. Methods: The effect of intensive light on the mouse retina function was searched in the Gene Expression Omnibus (GEO) database. The data of GSE22818 were assessed by the GEO2R program. The significant differentially expressed genes (DEGs) were determined and evaluated via directed protein-protein interaction (PPI) network analysis. The critical significant DEGs were enriched via gene ontology analysis to find the related biological processes, molecular function, and biochemical pathways. Results: Data analysis indicates that the high intensity of light induces gene expression alteration in the retina. 105 significant DEGs were identified as the main responsive genes to light damage in the retina. STAT3, JUN, IL6ST, SOCS3, ATF3, JUNB, FOSL1, CCL2, ICAM1, FGF2, AGT, MYC, LIF, CISH, and EGR1 were introduced as the critical affected genes. STAT3, JUN, IL6ST, SOCS3, and ATF3 and "Positive regulation of the receptor signaling pathway via JAK-STAT" were highlighted as the key elements of molecular events. Conclusion: It can be concluded that regulation of the key DEGs and the dependent biological terms can effectively provide tools to prevent the development of light-induced retinal damage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
强光诱发视网膜损伤的分子机制分析
导言视网膜是对光敏感的组织,强光照射会导致光引起的视网膜损伤。有研究指出,光感受器损伤是视网膜功能下降的原因。本研究旨在检测参与视网膜对强光照射反应的主要基因和生物术语。研究方法在基因表达总库(Gene Expression Omnibus,GEO)数据库中搜索强光对小鼠视网膜功能的影响。用 GEO2R 程序评估了 GSE22818 的数据。通过定向蛋白-蛋白相互作用(PPI)网络分析,确定并评估了重要的差异表达基因(DEGs)。通过基因本体分析对关键的重要 DEGs 进行富集,以找到相关的生物学过程、分子功能和生化通路。结果数据分析表明,高强度光诱导视网膜中基因表达的改变。105个重要的DEGs被确定为视网膜对光损伤的主要反应基因。STAT3、JUN、IL6ST、SOCS3、ATF3、JUNB、FOSL1、CCL2、ICAM1、FGF2、AGT、MYC、LIF、CISH 和 EGR1 被认为是关键的受影响基因。STAT3、JUN、IL6ST、SOCS3 和 ATF3 以及 "通过 JAK-STAT 对受体信号通路进行正向调节 "被强调为分子事件的关键因素。结论可以得出的结论是,对关键 DEGs 和从属生物学术语的调控可有效地为预防光诱导视网膜损伤的发展提供工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of lasers in medical sciences
Journal of lasers in medical sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
13.30%
发文量
24
期刊介绍: The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)
期刊最新文献
Effects of Photobiomodulation Using Low-Power Diode Laser Therapy and Nano-bone on Mandibular Bone Regeneration in Rats. Comparison of the Effects of Gluma Gel, Sensodyne Repair and Protect Toothpaste, and an 810 nm Low Power Diode Laser on the Closure of Dentinal Tubules: An In Vitro Study. Photobiomodulation Improves Histological Parameters of Testis and Spermatogenesis in Adult Mice Exposed to Scrotal Hyperthermia in the Prepubertal Phase. Enhanced Therapeutic Efficacy of Gold Nanoparticle-Enhanced Laser Therapy for Oral Cancer: A Promising Photothermal Approach. Molecular Mechanism Analysis of Intensive Light-Induced Retinal Damages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1