Candelas Gross-Valle, Tessa C Jacobs, Janneke D A Dijck-Brouwer, Janniek Lubberts, Barbara M Bakker, Stephan J L Bakker, Yvonne van der Veen, Andrea B Schreuder, Terry G J Derks, Jennifer van der Krogt, Joost Groen, M Rebecca Heiner-Fokkema
{"title":"The relation between dietary polysaccharide intake and urinary excretion of tetraglucoside.","authors":"Candelas Gross-Valle, Tessa C Jacobs, Janneke D A Dijck-Brouwer, Janniek Lubberts, Barbara M Bakker, Stephan J L Bakker, Yvonne van der Veen, Andrea B Schreuder, Terry G J Derks, Jennifer van der Krogt, Joost Groen, M Rebecca Heiner-Fokkema","doi":"10.1002/jimd.12801","DOIUrl":null,"url":null,"abstract":"<p><p>The urinary metabolite tetraglucoside (Glc4) is a potential biomarker for hepatic glycogen storage diseases (GSDs). Glc4 is believed to reflect body glycogen content and/or turnover. However, dietary polysaccharide intake may influence Glc4 excretion, potentially limiting the utility of Glc4 as a monitoring biomarker in hepatic GSDs. We aimed to investigate the association of dietary polysaccharide intake with Glc4 excretion. Urinary Glc4 excretion (mmol/mmol creatinine and mmol/24 h) was analyzed using a validated LC-MS/MS method. Data was analyzed from 65 kidney transplant recipients and 58 healthy kidney donors in the TransplantLines cohort study. Spearman's correlation and multivariable linear regression analyses were performed. In the multivariable analysis, dry lean body mass (DLBM), dietary polysaccharide intake, transplantation status, age, sex, and glycated hemoglobin (HbA1c) served as independent variables. Daily variation was examined in 21 healthy individuals of urinary Glc4 excretion in 2-h collections over a 24-h period. Mixed generalized additive models were built to study the association of prior polysaccharide intake with Glc4 excretion. No (univariate) associations were found between polysaccharide intake and Glc4 excretion. However, a significant interaction between DLBM and polysaccharide on 24 h Glc4 excretion was observed in the multivariate analysis. Glc4 excretion throughout the day exhibited no relationship to prior polysaccharide intake. Our findings suggest an indirect effect of polysaccharide intake on Glc4 excretion, potentially due to changes in muscle glycogen content and/or turnover. We have found no evidence that dietary polysaccharides under normal intakes increase urinary Glc4 directly.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inherited Metabolic Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jimd.12801","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
The urinary metabolite tetraglucoside (Glc4) is a potential biomarker for hepatic glycogen storage diseases (GSDs). Glc4 is believed to reflect body glycogen content and/or turnover. However, dietary polysaccharide intake may influence Glc4 excretion, potentially limiting the utility of Glc4 as a monitoring biomarker in hepatic GSDs. We aimed to investigate the association of dietary polysaccharide intake with Glc4 excretion. Urinary Glc4 excretion (mmol/mmol creatinine and mmol/24 h) was analyzed using a validated LC-MS/MS method. Data was analyzed from 65 kidney transplant recipients and 58 healthy kidney donors in the TransplantLines cohort study. Spearman's correlation and multivariable linear regression analyses were performed. In the multivariable analysis, dry lean body mass (DLBM), dietary polysaccharide intake, transplantation status, age, sex, and glycated hemoglobin (HbA1c) served as independent variables. Daily variation was examined in 21 healthy individuals of urinary Glc4 excretion in 2-h collections over a 24-h period. Mixed generalized additive models were built to study the association of prior polysaccharide intake with Glc4 excretion. No (univariate) associations were found between polysaccharide intake and Glc4 excretion. However, a significant interaction between DLBM and polysaccharide on 24 h Glc4 excretion was observed in the multivariate analysis. Glc4 excretion throughout the day exhibited no relationship to prior polysaccharide intake. Our findings suggest an indirect effect of polysaccharide intake on Glc4 excretion, potentially due to changes in muscle glycogen content and/or turnover. We have found no evidence that dietary polysaccharides under normal intakes increase urinary Glc4 directly.
期刊介绍:
The Journal of Inherited Metabolic Disease (JIMD) is the official journal of the Society for the Study of Inborn Errors of Metabolism (SSIEM). By enhancing communication between workers in the field throughout the world, the JIMD aims to improve the management and understanding of inherited metabolic disorders. It publishes results of original research and new or important observations pertaining to any aspect of inherited metabolic disease in humans and higher animals. This includes clinical (medical, dental and veterinary), biochemical, genetic (including cytogenetic, molecular and population genetic), experimental (including cell biological), methodological, theoretical, epidemiological, ethical and counselling aspects. The JIMD also reviews important new developments or controversial issues relating to metabolic disorders and publishes reviews and short reports arising from the Society''s annual symposia. A distinction is made between peer-reviewed scientific material that is selected because of its significance for other professionals in the field and non-peer- reviewed material that aims to be important, controversial, interesting or entertaining (“Extras”).