Calogera M Simonaro, Makiko Yasuda, Edward H Schuchman
Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.
{"title":"Endocannabinoid receptor 2 is a potential biomarker and therapeutic target for the lysosomal storage disorders.","authors":"Calogera M Simonaro, Makiko Yasuda, Edward H Schuchman","doi":"10.1002/jimd.12813","DOIUrl":"https://doi.org/10.1002/jimd.12813","url":null,"abstract":"<p><p>Herein, we studied the expression of endocannabinoid receptor 2 (CB2R), a known inflammation mediator, in several lysosomal storage disorder (LSD) animal models and evaluated it as a potential biomarker and therapeutic target for these diseases. CB2R was highly elevated in the plasma of Farber disease and mucopolysaccharidosis (MPS) type IIIA mice, followed by Fabry disease and MPS type I mice. Mice with acid sphingomyelinase-deficient Niemann-Pick disease (ASMD) and rats with MPS type VI exhibited little or no plasma CB2R elevation. High-level expression of CB2R was also observed in tissues of Farber and MPS IIIA mice. Treatment of MPS IIIIA patient cells with CB2R agonists led to a reduction of CB2R and monocyte chemoattractant protein-1 (MCP-1), a chemotactic factor that is elevated in this LSD. Treatment of MPS IIIA mice with one of these agonists (JWH133) led to a reduction of plasma and tissue CB2R and MCP-1, a reduction of glial fibrillary acidic protein (GFAP) in the brain, and an improvement in hanging test performance. JWH133 treatment of Farber disease mice also led to a reduction of MCP-1 in tissues and plasma, and treatment of these mice by enzyme replacement therapy (ERT) led to a reduction of plasma CB2R, indicating its potential to monitor treatment response. Overall, these findings suggest that CB2R should be further examined as a potential therapeutic target for the LSDs and may also be a useful biomarker to monitor the impact of therapies.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142681978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Parya Rahimi, Stanislav Mareček, Radan Brůha, Monika Dezortová, Petr Sojka, Milan Hájek, Marta Skowrońska, Łukasz Smoliński, Petr Urbánek, Tomasz Litwin, Petr Dušek
Wilson disease (WD) primarily presents with hepatic and neurological symptoms. While hepatic symptoms typically precede the neurological manifestations, copper accumulates in the brain already in this patient group and leads to subclinical brain MRI abnormalities including T2 hyperintensities and atrophy. This study aimed to assess brain morphological changes in mild hepatic WD. WD patients without a history of neurologic symptoms and decompensated cirrhosis and control participants underwent brain MRI at 3T scanner including high-resolution T1-weighted images. A volumetric evaluation was conducted on the following brain regions: nucleus accumbens, caudate, pallidum, putamen, thalamus, amygdala, hippocampus, midbrain, pons, cerebellar gray matter, white matter (WM), and superior peduncle, using Freesurfer v7 software. Whole-brain analyses using voxel- and surface-based morphometry were performed using SPM12. Statistical comparisons utilized a general linear model adjusted for total intracranial volume, age, and sex. Twenty-six WD patients with mild hepatic form (30 ± 9 years [mean age ± SD]); 11 women; mean treatment duration 13 ± 12 (range 0-42) years and 28 healthy controls (33 ± 9 years; 15 women) were evaluated. Volumetric analysis revealed a significantly smaller pons volume and a trend for smaller midbrain and cerebellar WM in WD patients compared to controls. Whole-brain analysis revealed regions of reduced volume in the pons, cerebellar, and lobar WM in the WD group. No significant differences in gray matter density or cortical thickness were found. Myelin or WM in general seems vulnerable to low-level copper toxicity, with WM volume loss showing promise as a marker for assessing brain involvement in early WD stages.
{"title":"Brain morphometry in hepatic Wilson disease patients.","authors":"Parya Rahimi, Stanislav Mareček, Radan Brůha, Monika Dezortová, Petr Sojka, Milan Hájek, Marta Skowrońska, Łukasz Smoliński, Petr Urbánek, Tomasz Litwin, Petr Dušek","doi":"10.1002/jimd.12814","DOIUrl":"https://doi.org/10.1002/jimd.12814","url":null,"abstract":"<p><p>Wilson disease (WD) primarily presents with hepatic and neurological symptoms. While hepatic symptoms typically precede the neurological manifestations, copper accumulates in the brain already in this patient group and leads to subclinical brain MRI abnormalities including T2 hyperintensities and atrophy. This study aimed to assess brain morphological changes in mild hepatic WD. WD patients without a history of neurologic symptoms and decompensated cirrhosis and control participants underwent brain MRI at 3T scanner including high-resolution T1-weighted images. A volumetric evaluation was conducted on the following brain regions: nucleus accumbens, caudate, pallidum, putamen, thalamus, amygdala, hippocampus, midbrain, pons, cerebellar gray matter, white matter (WM), and superior peduncle, using Freesurfer v7 software. Whole-brain analyses using voxel- and surface-based morphometry were performed using SPM12. Statistical comparisons utilized a general linear model adjusted for total intracranial volume, age, and sex. Twenty-six WD patients with mild hepatic form (30 ± 9 years [mean age ± SD]); 11 women; mean treatment duration 13 ± 12 (range 0-42) years and 28 healthy controls (33 ± 9 years; 15 women) were evaluated. Volumetric analysis revealed a significantly smaller pons volume and a trend for smaller midbrain and cerebellar WM in WD patients compared to controls. Whole-brain analysis revealed regions of reduced volume in the pons, cerebellar, and lobar WM in the WD group. No significant differences in gray matter density or cortical thickness were found. Myelin or WM in general seems vulnerable to low-level copper toxicity, with WM volume loss showing promise as a marker for assessing brain involvement in early WD stages.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hans R Waterham, Ronald J A Wanders, Ron A Wevers, Clara D van Karnebeek
{"title":"A Dutch translational knowledge agenda for inherited metabolic diseases.","authors":"Hans R Waterham, Ronald J A Wanders, Ron A Wevers, Clara D van Karnebeek","doi":"10.1002/jimd.12812","DOIUrl":"https://doi.org/10.1002/jimd.12812","url":null,"abstract":"","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Julia Neugebauer, Karit Reinson, Marcello Bellusci, Julien H Park, Omar Hikmat, Enrico Bertini, Manuel Schiff, Shamima Rahman
Primary mitochondrial diseases (PMD) account for a group of approximately 400 different genetic disorders with diverse clinical presentations and pathomechanisms. Although each individual disorder is rare, collectively they represent one of the largest groups in the field of inherited metabolic disorders. The complexity of PMD results in a continued lack of therapeutic options, necessitating a predominantly symptomatic treatment approach for affected patients. While a subset of diseases responds exceptionally well to treatment with specific vitamins or cofactors, for most PMD systematic reviews were not able to show significant benefit. This is in discrepancy to their continued frequent use among specialists. To gain further insight into the current clinical practice of vitamin and cofactor supplementation among clinicians treating children and adults affected by PMD, we conducted a worldwide cross-sectional questionnaire study exploring the choice of substances and the specific diseases where they are applied. To our knowledge, this is the first global study exploring this topic and featuring a high response rate from paediatricians. The vast majority (95%, 106/112) of responding specialists recommended the use of vitamins and cofactors, either in an agnostic approach irrespective of the specific PMD or directed to the treatment of specific diseases or phenotypes. Our study highlights significant regional and specialty-specific differences in supplementation practices. We provide some preliminary insights into specialist-based opinions regarding the use of vitamins and cofactors in PMD and highlight the need for more rigorous clinical and preclinical investigations and/or clear consensus statements.
{"title":"Current global vitamin and cofactor prescribing practices for primary mitochondrial diseases: Results of a European reference network survey.","authors":"Julia Neugebauer, Karit Reinson, Marcello Bellusci, Julien H Park, Omar Hikmat, Enrico Bertini, Manuel Schiff, Shamima Rahman","doi":"10.1002/jimd.12805","DOIUrl":"https://doi.org/10.1002/jimd.12805","url":null,"abstract":"<p><p>Primary mitochondrial diseases (PMD) account for a group of approximately 400 different genetic disorders with diverse clinical presentations and pathomechanisms. Although each individual disorder is rare, collectively they represent one of the largest groups in the field of inherited metabolic disorders. The complexity of PMD results in a continued lack of therapeutic options, necessitating a predominantly symptomatic treatment approach for affected patients. While a subset of diseases responds exceptionally well to treatment with specific vitamins or cofactors, for most PMD systematic reviews were not able to show significant benefit. This is in discrepancy to their continued frequent use among specialists. To gain further insight into the current clinical practice of vitamin and cofactor supplementation among clinicians treating children and adults affected by PMD, we conducted a worldwide cross-sectional questionnaire study exploring the choice of substances and the specific diseases where they are applied. To our knowledge, this is the first global study exploring this topic and featuring a high response rate from paediatricians. The vast majority (95%, 106/112) of responding specialists recommended the use of vitamins and cofactors, either in an agnostic approach irrespective of the specific PMD or directed to the treatment of specific diseases or phenotypes. Our study highlights significant regional and specialty-specific differences in supplementation practices. We provide some preliminary insights into specialist-based opinions regarding the use of vitamins and cofactors in PMD and highlight the need for more rigorous clinical and preclinical investigations and/or clear consensus statements.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142622235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"News from Valencia: JIMD themed issue on ureagenesis defects and allied disorders.","authors":"Vicente Rubio, Johannes Häberle","doi":"10.1002/jimd.12811","DOIUrl":"https://doi.org/10.1002/jimd.12811","url":null,"abstract":"","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142545939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Candelas Gross-Valle, Tessa C Jacobs, Janneke D A Dijck-Brouwer, Janniek Lubberts, Barbara M Bakker, Stephan J L Bakker, Yvonne van der Veen, Andrea B Schreuder, Terry G J Derks, Jennifer van der Krogt, Joost Groen, M Rebecca Heiner-Fokkema
The urinary metabolite tetraglucoside (Glc4) is a potential biomarker for hepatic glycogen storage diseases (GSDs). Glc4 is believed to reflect body glycogen content and/or turnover. However, dietary polysaccharide intake may influence Glc4 excretion, potentially limiting the utility of Glc4 as a monitoring biomarker in hepatic GSDs. We aimed to investigate the association of dietary polysaccharide intake with Glc4 excretion. Urinary Glc4 excretion (mmol/mmol creatinine and mmol/24 h) was analyzed using a validated LC-MS/MS method. Data was analyzed from 65 kidney transplant recipients and 58 healthy kidney donors in the TransplantLines cohort study. Spearman's correlation and multivariable linear regression analyses were performed. In the multivariable analysis, dry lean body mass (DLBM), dietary polysaccharide intake, transplantation status, age, sex, and glycated hemoglobin (HbA1c) served as independent variables. Daily variation was examined in 21 healthy individuals of urinary Glc4 excretion in 2-h collections over a 24-h period. Mixed generalized additive models were built to study the association of prior polysaccharide intake with Glc4 excretion. No (univariate) associations were found between polysaccharide intake and Glc4 excretion. However, a significant interaction between DLBM and polysaccharide on 24 h Glc4 excretion was observed in the multivariate analysis. Glc4 excretion throughout the day exhibited no relationship to prior polysaccharide intake. Our findings suggest an indirect effect of polysaccharide intake on Glc4 excretion, potentially due to changes in muscle glycogen content and/or turnover. We have found no evidence that dietary polysaccharides under normal intakes increase urinary Glc4 directly.
{"title":"The relation between dietary polysaccharide intake and urinary excretion of tetraglucoside.","authors":"Candelas Gross-Valle, Tessa C Jacobs, Janneke D A Dijck-Brouwer, Janniek Lubberts, Barbara M Bakker, Stephan J L Bakker, Yvonne van der Veen, Andrea B Schreuder, Terry G J Derks, Jennifer van der Krogt, Joost Groen, M Rebecca Heiner-Fokkema","doi":"10.1002/jimd.12801","DOIUrl":"https://doi.org/10.1002/jimd.12801","url":null,"abstract":"<p><p>The urinary metabolite tetraglucoside (Glc4) is a potential biomarker for hepatic glycogen storage diseases (GSDs). Glc4 is believed to reflect body glycogen content and/or turnover. However, dietary polysaccharide intake may influence Glc4 excretion, potentially limiting the utility of Glc4 as a monitoring biomarker in hepatic GSDs. We aimed to investigate the association of dietary polysaccharide intake with Glc4 excretion. Urinary Glc4 excretion (mmol/mmol creatinine and mmol/24 h) was analyzed using a validated LC-MS/MS method. Data was analyzed from 65 kidney transplant recipients and 58 healthy kidney donors in the TransplantLines cohort study. Spearman's correlation and multivariable linear regression analyses were performed. In the multivariable analysis, dry lean body mass (DLBM), dietary polysaccharide intake, transplantation status, age, sex, and glycated hemoglobin (HbA1c) served as independent variables. Daily variation was examined in 21 healthy individuals of urinary Glc4 excretion in 2-h collections over a 24-h period. Mixed generalized additive models were built to study the association of prior polysaccharide intake with Glc4 excretion. No (univariate) associations were found between polysaccharide intake and Glc4 excretion. However, a significant interaction between DLBM and polysaccharide on 24 h Glc4 excretion was observed in the multivariate analysis. Glc4 excretion throughout the day exhibited no relationship to prior polysaccharide intake. Our findings suggest an indirect effect of polysaccharide intake on Glc4 excretion, potentially due to changes in muscle glycogen content and/or turnover. We have found no evidence that dietary polysaccharides under normal intakes increase urinary Glc4 directly.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Acute intermittent porphyria is an inherited error of heme synthesis. The underlying pathophysiology, involving mainly hepatic heme synthesis, is poorly understood despite its occurrence, and the severity of acute porphyria attack is still difficult to control. A better understanding of the interactions between heme synthesis and global metabolism would improve the management of AIP patients. An untargeted metabolomic analysis was performed on the urine of 114 patients with overt AIP and asymptomatic carriers using liquid chromatography coupled to high-resolution mass spectrometry. The collected data were analyzed by combining univariate and multivariate analyses. A total of 239 metabolites were annotated in urine samples by matching chromatographic and mass spectral characteristics with those from our chemical library. Twenty-six metabolites, including porphyrin precursors, intermediates of tryptophan or glycine metabolism and, unexpectedly, bile acids, showed significant concentration differences between the phenotypic groups. Dysregulation of bile acid metabolism was confirmed by targeted quantitative analysis, which revealed an imbalance in favor of hydrophobic bile acids associated with changes in conjugation, which was more pronounced in the severe phenotype. Using a random forest model, the cholic acid/chenodeoxycholic acid ratio enables the differential classification of severe patients from other patients with a diagnostic accuracy of 84%. The analysis of urine samples revealed significant modifications in the metabolome of AIP patients. Alteration in bile acids provides new insights into the pathophysiology of chronic complications, such as primary liver cancer, while also providing new biomarker candidates for predicting the most severe phenotypes.
{"title":"Nontargeted urine metabolomic analysis of acute intermittent porphyria reveals novel interactions between bile acids and heme metabolism: New promising biomarkers for the long-term management of patients.","authors":"Thibaud Lefebvre, Thibaut Eguether, Etienne Thévenot, Antoine Poli, Emeline Chu-Van, Pranvera Krasniqi, Caroline Schmitt, Neila Talbi, Gaël Nicolas, Hervé Puy, Christophe Junot, Antonin Lamazière, Florence Castelli, Laurent Gouya, François Fenaille","doi":"10.1002/jimd.12809","DOIUrl":"https://doi.org/10.1002/jimd.12809","url":null,"abstract":"<p><p>Acute intermittent porphyria is an inherited error of heme synthesis. The underlying pathophysiology, involving mainly hepatic heme synthesis, is poorly understood despite its occurrence, and the severity of acute porphyria attack is still difficult to control. A better understanding of the interactions between heme synthesis and global metabolism would improve the management of AIP patients. An untargeted metabolomic analysis was performed on the urine of 114 patients with overt AIP and asymptomatic carriers using liquid chromatography coupled to high-resolution mass spectrometry. The collected data were analyzed by combining univariate and multivariate analyses. A total of 239 metabolites were annotated in urine samples by matching chromatographic and mass spectral characteristics with those from our chemical library. Twenty-six metabolites, including porphyrin precursors, intermediates of tryptophan or glycine metabolism and, unexpectedly, bile acids, showed significant concentration differences between the phenotypic groups. Dysregulation of bile acid metabolism was confirmed by targeted quantitative analysis, which revealed an imbalance in favor of hydrophobic bile acids associated with changes in conjugation, which was more pronounced in the severe phenotype. Using a random forest model, the cholic acid/chenodeoxycholic acid ratio enables the differential classification of severe patients from other patients with a diagnostic accuracy of 84%. The analysis of urine samples revealed significant modifications in the metabolome of AIP patients. Alteration in bile acids provides new insights into the pathophysiology of chronic complications, such as primary liver cancer, while also providing new biomarker candidates for predicting the most severe phenotypes.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanie Willimann, Hiu Man Grisch-Chan, Nicole Rimann, Tanja Rothgangl, Martina Hruzova, Gerald Schwank, Beat Thöny
For gene therapy of the liver, in vivo applications based on adeno-associated virus are the most advanced vectors despite limitations, including low efficacy and episomal loss, potential integration and safety issues, and high production costs. Alternative vectors and/or delivery routes are of high interest. The regenerative ability of the liver bears the potential for ex vivo therapy using liver cell transplantation for disease correction if provided with a selective advantage to expand and replace the existing cell mass. Here we present such treatment of a mouse model of human phenylketonuria (PKU). Primary hepatocytes from wild-type mice were gene modified in vitro (with a lentiviral vector) that carries a gene editing system (CRISPR) to inhibit Cypor. Cypor inactivation confers paracetamol (or acetaminophen) resistance to hepatocytes and thus a growth advantage to eliminate the pre-existing liver cells upon grafting (via the spleen) and exposure to repeated treatment with paracetamol. Grafting Cypor-inactivated wild-type hepatocytes into inbred young adult enu2 (PKU) mice, followed by selective expansion by paracetamol dosing, resulted in replacing up to 5% of cell mass, normalization of blood phenylalanine, and permanent correction of PKU. Hepatocyte transplantation offers thus an armamentarium of novel therapy options for genetic liver defects.
{"title":"Therapeutic liver cell transplantation to treat murine PKU.","authors":"Melanie Willimann, Hiu Man Grisch-Chan, Nicole Rimann, Tanja Rothgangl, Martina Hruzova, Gerald Schwank, Beat Thöny","doi":"10.1002/jimd.12802","DOIUrl":"https://doi.org/10.1002/jimd.12802","url":null,"abstract":"<p><p>For gene therapy of the liver, in vivo applications based on adeno-associated virus are the most advanced vectors despite limitations, including low efficacy and episomal loss, potential integration and safety issues, and high production costs. Alternative vectors and/or delivery routes are of high interest. The regenerative ability of the liver bears the potential for ex vivo therapy using liver cell transplantation for disease correction if provided with a selective advantage to expand and replace the existing cell mass. Here we present such treatment of a mouse model of human phenylketonuria (PKU). Primary hepatocytes from wild-type mice were gene modified in vitro (with a lentiviral vector) that carries a gene editing system (CRISPR) to inhibit Cypor. Cypor inactivation confers paracetamol (or acetaminophen) resistance to hepatocytes and thus a growth advantage to eliminate the pre-existing liver cells upon grafting (via the spleen) and exposure to repeated treatment with paracetamol. Grafting Cypor-inactivated wild-type hepatocytes into inbred young adult enu2 (PKU) mice, followed by selective expansion by paracetamol dosing, resulted in replacing up to 5% of cell mass, normalization of blood phenylalanine, and permanent correction of PKU. Hepatocyte transplantation offers thus an armamentarium of novel therapy options for genetic liver defects.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eva Richard, Ainhoa Martínez-Pizarro, Lourdes R Desviat
RNA has triggered a significant shift in modern medicine, providing a promising way to revolutionize disease treatment methods. Different therapeutic RNA modalities have shown promise to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. Currently, there are 22 RNA-based drugs approved for clinical use, including the COVID-19 mRNA vaccines, whose unprecedented worldwide success has meant a definitive boost in the RNA research field. Urea cycle disorders (UCD), liver diseases with high mortality and morbidity, may benefit from the progress achieved, as different genetic payloads have been successfully targeted to liver using viral vectors, N-acetylgalactosamine (GalNAc) conjugations or lipid nanoparticles (LNP). This review explores the potential of RNA-based medicines for UCD and the ongoing development of applications targeting specific gene defects, enzymes, or transporters taking part in the urea cycle. Notably, LNP-formulated mRNA therapy has been assayed preclinically for citrullinemia type I (CTLN1), adolescent and adult citrin deficiency, argininosuccinic aciduria, arginase deficiency and ornithine transcarbamylase deficiency, in the latter case has progressed to the clinical trials phase.
{"title":"Exploring RNA therapeutics for urea cycle disorders.","authors":"Eva Richard, Ainhoa Martínez-Pizarro, Lourdes R Desviat","doi":"10.1002/jimd.12807","DOIUrl":"https://doi.org/10.1002/jimd.12807","url":null,"abstract":"<p><p>RNA has triggered a significant shift in modern medicine, providing a promising way to revolutionize disease treatment methods. Different therapeutic RNA modalities have shown promise to replace, supplement, correct, suppress, or eliminate the expression of a targeted gene. Currently, there are 22 RNA-based drugs approved for clinical use, including the COVID-19 mRNA vaccines, whose unprecedented worldwide success has meant a definitive boost in the RNA research field. Urea cycle disorders (UCD), liver diseases with high mortality and morbidity, may benefit from the progress achieved, as different genetic payloads have been successfully targeted to liver using viral vectors, N-acetylgalactosamine (GalNAc) conjugations or lipid nanoparticles (LNP). This review explores the potential of RNA-based medicines for UCD and the ongoing development of applications targeting specific gene defects, enzymes, or transporters taking part in the urea cycle. Notably, LNP-formulated mRNA therapy has been assayed preclinically for citrullinemia type I (CTLN1), adolescent and adult citrin deficiency, argininosuccinic aciduria, arginase deficiency and ornithine transcarbamylase deficiency, in the latter case has progressed to the clinical trials phase.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christoph Kampmann, Christina Lampe, Christiane M Wiethoff, Laila Arash-Kaps, Eugen Mengel, Joerg Reinke, Michael Beck, Julia B Hennermann, Tariq Abu-Tair
Mucopolysaccharidosis II (MPS II, Hunter syndrome) is a rare, X-linked lysosomal storage disease caused by reduced activity of iduronate-2-sulfatase (I2S), with subsequent cellular accumulation of the glycosaminoglycans (GAGs), heparan sulfate, and dermatan sulfate (DS). DS is a major component of the extracellular matrix of heart valves, which can be affected in MPS II. We investigated the natural history of valve disease in MPS II and the impact of long-term intravenous enzyme replacement therapy (ERT) with recombinant I2S (idursulfase). In total, 604 cardiac examinations were assessed from serial follow-up of 80 male patients (49 neuronopathic). Valve disease was classified according to standard practice from hemodynamic features evident from echocardiography. The natural history group comprised 48 patients (up to 14.8 years of follow-up; median, 2.6 years; 24 patients started ERT during the study); 56 patients were treated (up to 14.2 years of follow-up; median, 6.2 years). Lifetime GAG burden (calculated from urinary GAG measurements) correlated significantly with the degree of valve disease. Onset of moderate-to-severe valve disease was significantly delayed in treated (median age at onset, 29.1 ± 2 [95% CI: 25.2-32.9] years; Kaplan-Meier estimation) versus untreated patients (17.6 ± 1 [95% Cl: 15.8-19.4] years; p < 0.0001). Cox regression modeling found that long-term ERT reduced the probability of developing severe valve disease (χ2, 32.736; significant after 5 years of ERT). Overall, this study found that valve disease severity in MPS II correlates with GAG burden and that progression is delayed by long-term ERT.
{"title":"Natural history of valve disease in patients with mucopolysaccharidosis II and the impact of enzyme replacement therapy.","authors":"Christoph Kampmann, Christina Lampe, Christiane M Wiethoff, Laila Arash-Kaps, Eugen Mengel, Joerg Reinke, Michael Beck, Julia B Hennermann, Tariq Abu-Tair","doi":"10.1002/jimd.12808","DOIUrl":"https://doi.org/10.1002/jimd.12808","url":null,"abstract":"<p><p>Mucopolysaccharidosis II (MPS II, Hunter syndrome) is a rare, X-linked lysosomal storage disease caused by reduced activity of iduronate-2-sulfatase (I2S), with subsequent cellular accumulation of the glycosaminoglycans (GAGs), heparan sulfate, and dermatan sulfate (DS). DS is a major component of the extracellular matrix of heart valves, which can be affected in MPS II. We investigated the natural history of valve disease in MPS II and the impact of long-term intravenous enzyme replacement therapy (ERT) with recombinant I2S (idursulfase). In total, 604 cardiac examinations were assessed from serial follow-up of 80 male patients (49 neuronopathic). Valve disease was classified according to standard practice from hemodynamic features evident from echocardiography. The natural history group comprised 48 patients (up to 14.8 years of follow-up; median, 2.6 years; 24 patients started ERT during the study); 56 patients were treated (up to 14.2 years of follow-up; median, 6.2 years). Lifetime GAG burden (calculated from urinary GAG measurements) correlated significantly with the degree of valve disease. Onset of moderate-to-severe valve disease was significantly delayed in treated (median age at onset, 29.1 ± 2 [95% CI: 25.2-32.9] years; Kaplan-Meier estimation) versus untreated patients (17.6 ± 1 [95% Cl: 15.8-19.4] years; p < 0.0001). Cox regression modeling found that long-term ERT reduced the probability of developing severe valve disease (χ<sup>2</sup>, 32.736; significant after 5 years of ERT). Overall, this study found that valve disease severity in MPS II correlates with GAG burden and that progression is delayed by long-term ERT.</p>","PeriodicalId":16281,"journal":{"name":"Journal of Inherited Metabolic Disease","volume":" ","pages":""},"PeriodicalIF":4.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142502136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}