{"title":"Study on the role of RPL23 gene in active immunity of termite Reticulitermes chinensis against Metarhizium anisopliae","authors":"Shuxin Yu , Ali Hassan , Nasir Mehmood , Wei Zhou , Taqi Raza , Qiuying Huang","doi":"10.1016/j.jip.2024.108226","DOIUrl":null,"url":null,"abstract":"<div><div>Ribosomal proteins are considered to be involved in the immunity of different animals against pathogens. The protein level of RPL23 increased after fungal infection in termites, but how it influence active immunity in termites is unknown. The role of <em>RPL23</em> gene was studied to evaluate its impact on active immunity of termite <em>Reticulitermes chinensis</em> against entomopathogenic fungus (EPF) <em>Metarhizium anisopliae</em>. The <em>RPL23</em> gene fragment (414 bp) was cloned and phylogenetic analysis revealed that it’s very close to termite <em>Coptotermes formosanus</em>. Expression of <em>RPL23</em> gene was significantly higher in abdomen as compared to thorax and head. Silencing <em>RPL23</em> gene had no significant impact on the frequency and time of allogrooming towards fungus exposed termites from nestmates, which showed that nestmates acquired spores from infected termites through allogrooming. Expression of immune genes (<em>GNBP1</em>, <em>GNBP2</em> and phenoloxidase) and apoptosis related genes (<em>TNF-α,</em> caspase 1, caspase 3 and caspase 8) decreased significantly in nestmates of fungus-treated termites after silencing of <em>RPL23</em> gene as compared to control. Antifungal activity and survival of <em>RPL23</em> silenced nestmates of fungus-treated termites also decreased. To sum up, this study found that silencing of <em>RPL23</em> gene broke the active immunity against <em>M. anisopliae</em> infection, reduced the antifungal activity of termites, weakened cell apoptosis, and led to increased mortality of termites, which may help to find a potential alternative for chemical insecticides to control termites.</div></div>","PeriodicalId":16296,"journal":{"name":"Journal of invertebrate pathology","volume":"207 ","pages":"Article 108226"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of invertebrate pathology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022201124001691","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ribosomal proteins are considered to be involved in the immunity of different animals against pathogens. The protein level of RPL23 increased after fungal infection in termites, but how it influence active immunity in termites is unknown. The role of RPL23 gene was studied to evaluate its impact on active immunity of termite Reticulitermes chinensis against entomopathogenic fungus (EPF) Metarhizium anisopliae. The RPL23 gene fragment (414 bp) was cloned and phylogenetic analysis revealed that it’s very close to termite Coptotermes formosanus. Expression of RPL23 gene was significantly higher in abdomen as compared to thorax and head. Silencing RPL23 gene had no significant impact on the frequency and time of allogrooming towards fungus exposed termites from nestmates, which showed that nestmates acquired spores from infected termites through allogrooming. Expression of immune genes (GNBP1, GNBP2 and phenoloxidase) and apoptosis related genes (TNF-α, caspase 1, caspase 3 and caspase 8) decreased significantly in nestmates of fungus-treated termites after silencing of RPL23 gene as compared to control. Antifungal activity and survival of RPL23 silenced nestmates of fungus-treated termites also decreased. To sum up, this study found that silencing of RPL23 gene broke the active immunity against M. anisopliae infection, reduced the antifungal activity of termites, weakened cell apoptosis, and led to increased mortality of termites, which may help to find a potential alternative for chemical insecticides to control termites.
期刊介绍:
The Journal of Invertebrate Pathology presents original research articles and notes on the induction and pathogenesis of diseases of invertebrates, including the suppression of diseases in beneficial species, and the use of diseases in controlling undesirable species. In addition, the journal publishes the results of physiological, morphological, genetic, immunological and ecological studies as related to the etiologic agents of diseases of invertebrates.
The Journal of Invertebrate Pathology is the adopted journal of the Society for Invertebrate Pathology, and is available to SIP members at a special reduced price.