Tunable electronic and optical properties of BAs/InS heterojunction based on first-principles calculations.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER Journal of Physics: Condensed Matter Pub Date : 2024-11-11 DOI:10.1088/1361-648X/ad8aba
Qianli Ma, Lei Ni, Duan Li, Yan Zhang
{"title":"Tunable electronic and optical properties of BAs/InS heterojunction based on first-principles calculations.","authors":"Qianli Ma, Lei Ni, Duan Li, Yan Zhang","doi":"10.1088/1361-648X/ad8aba","DOIUrl":null,"url":null,"abstract":"<p><p>The geometric structure, electronic properties, and optical characteristics of BAs/InS heterostructures are investigated in the present study through the first-principles calculations of Density Functional Theory. The analysis shows that H1-stacking BAs/InS heterostructures with an interlayer distance of 3.6 Å have excellent stability compared with monolayer materials. Furthermore, this heterostructure is classified as a Type-II heterostructure, which promotes the formation of photo-generated electron-hole pairs. The band alignment, direction and magnitude of electronic transfer in BAs/InS heterostructures can be fine-tuned by applying the external electric field and stress, which can also induce a transition from Type-II to Type-I behavior, the indirect bandgap to direct bandgap also occurs. Moreover, absorption coefficient of the heterostructure can also be moderately enhanced and adjusted by external electric fields and stress. These findings suggest that BAs/InS heterostructures have potential applications in photoelectric detectors and laser technology.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad8aba","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The geometric structure, electronic properties, and optical characteristics of BAs/InS heterostructures are investigated in the present study through the first-principles calculations of Density Functional Theory. The analysis shows that H1-stacking BAs/InS heterostructures with an interlayer distance of 3.6 Å have excellent stability compared with monolayer materials. Furthermore, this heterostructure is classified as a Type-II heterostructure, which promotes the formation of photo-generated electron-hole pairs. The band alignment, direction and magnitude of electronic transfer in BAs/InS heterostructures can be fine-tuned by applying the external electric field and stress, which can also induce a transition from Type-II to Type-I behavior, the indirect bandgap to direct bandgap also occurs. Moreover, absorption coefficient of the heterostructure can also be moderately enhanced and adjusted by external electric fields and stress. These findings suggest that BAs/InS heterostructures have potential applications in photoelectric detectors and laser technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于第一原理计算的 BAs/InS 异质结的可调谐电子和光学特性。
本研究通过密度泛函理论(DFT)的第一性原理计算,对 BAs/InS 异质结构的几何结构、电子特性和光学特性进行了研究。分析表明,与单层材料相比,层间距离为 3.6 Å 的 H1 叠层 BA/InS 异质结构具有出色的稳定性。此外,这种异质结构被归类为 II 型异质结构,可促进光生电子-空穴对的形成。通过施加外部电场和应力,可以微调 BAs/InS 异质结构中的带排列、电子转移方向和幅度,从而诱导其从 II 型行为过渡到 I 型行为,间接带隙到直接带隙也会发生。此外,异质结构的吸收系数也可以通过外加电场和应力得到适度增强和调整。这些发现表明,BAs/InS 异质结构在光电探测器和激光技术中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
期刊最新文献
Charge transfer induced phase transition in Li2MnO3at high pressure. From weak- to strong-coupling superconductivity in the AlB2-type solid solution SrGa1-xAlxGe with honeycomb layers. Magnetic order in nanogranular iron germanium (Fe0.53Ge0.47) films. Composite quadrupole order in ferroic and multiferroic materials. Topological and site disorder in boron nitride networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1