Validity and reliability of trunk and lower-limb kinematics during squatting, hopping, jumping and side-stepping using OpenCap markerless motion capture application.
Yuri Lopes Lima, Tyler Collings, Michelle Hall, Matthew N Bourne, Laura E Diamond
{"title":"Validity and reliability of trunk and lower-limb kinematics during squatting, hopping, jumping and side-stepping using OpenCap markerless motion capture application.","authors":"Yuri Lopes Lima, Tyler Collings, Michelle Hall, Matthew N Bourne, Laura E Diamond","doi":"10.1080/02640414.2024.2415233","DOIUrl":null,"url":null,"abstract":"<p><p>OpenCap is a web-based markerless motion capture platform that estimates 3D kinematics from videos recorded from at least two iOS devices. This study aimed to determine the concurrent validity and inter-session reliability of OpenCap for measuring trunk and lower-limb kinematics during squatting, hopping, countermovement jumping, and cutting. Nineteen participants (10 males, 9 females; age 27.7 ± 4.1 years) were included. Countermovement jump, single-leg triple vertical hop, single-leg squat, sidestep cutting and side hop tasks were assessed. For validity, OpenCap was compared to a marker-based motion capture system using root-mean-square error. Test-retest reliability of OpenCap was determined using intraclass correlations and minimum detectable change (MDC) from two testing sessions. The squat had the lowest RMSE across joint angles (mean = 7.0°, range = 2.9° to 13.6°). For peak angles, the countermovement jump (jump phase) (ICC = 0.62-0.93) and the squat (ICC = 0.60-0.92) had the best reliability across all joints. For initial contact, the side hop had the best inter-session reliability (ICC = 0.70-0.94) across all joint angles. As such, OpenCap validity and reliability are joint and task specific.</p>","PeriodicalId":17066,"journal":{"name":"Journal of Sports Sciences","volume":" ","pages":"1847-1858"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sports Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02640414.2024.2415233","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
OpenCap is a web-based markerless motion capture platform that estimates 3D kinematics from videos recorded from at least two iOS devices. This study aimed to determine the concurrent validity and inter-session reliability of OpenCap for measuring trunk and lower-limb kinematics during squatting, hopping, countermovement jumping, and cutting. Nineteen participants (10 males, 9 females; age 27.7 ± 4.1 years) were included. Countermovement jump, single-leg triple vertical hop, single-leg squat, sidestep cutting and side hop tasks were assessed. For validity, OpenCap was compared to a marker-based motion capture system using root-mean-square error. Test-retest reliability of OpenCap was determined using intraclass correlations and minimum detectable change (MDC) from two testing sessions. The squat had the lowest RMSE across joint angles (mean = 7.0°, range = 2.9° to 13.6°). For peak angles, the countermovement jump (jump phase) (ICC = 0.62-0.93) and the squat (ICC = 0.60-0.92) had the best reliability across all joints. For initial contact, the side hop had the best inter-session reliability (ICC = 0.70-0.94) across all joint angles. As such, OpenCap validity and reliability are joint and task specific.
期刊介绍:
The Journal of Sports Sciences has an international reputation for publishing articles of a high standard and is both Medline and Clarivate Analytics-listed. It publishes research on various aspects of the sports and exercise sciences, including anatomy, biochemistry, biomechanics, performance analysis, physiology, psychology, sports medicine and health, as well as coaching and talent identification, kinanthropometry and other interdisciplinary perspectives.
The emphasis of the Journal is on the human sciences, broadly defined and applied to sport and exercise. Besides experimental work in human responses to exercise, the subjects covered will include human responses to technologies such as the design of sports equipment and playing facilities, research in training, selection, performance prediction or modification, and stress reduction or manifestation. Manuscripts considered for publication include those dealing with original investigations of exercise, validation of technological innovations in sport or comprehensive reviews of topics relevant to the scientific study of sport.