Seyedeh Elham Norollahi, Bahman Yousefi, Fatemeh Nejatifar, Shahrokh Yousefzadeh-Chabok, Ali Rashidy-Pour, Ali Akbar Samadani
{"title":"Practical immunomodulatory landscape of glioblastoma multiforme (GBM) therapy.","authors":"Seyedeh Elham Norollahi, Bahman Yousefi, Fatemeh Nejatifar, Shahrokh Yousefzadeh-Chabok, Ali Rashidy-Pour, Ali Akbar Samadani","doi":"10.1186/s43046-024-00240-4","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.</p>","PeriodicalId":17301,"journal":{"name":"Journal of the Egyptian National Cancer Institute","volume":"36 1","pages":"33"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Egyptian National Cancer Institute","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43046-024-00240-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Glioblastoma multiforme (GBM) is the most common harmful high-grade brain tumor with high mortality and low survival rate. Importantly, besides routine diagnostic and therapeutic methods, modern and useful practical techniques are urgently needed for this serious malignancy. Correspondingly, the translational medicine focusing on genetic and epigenetic profiles of glioblastoma, as well as the immune framework and brain microenvironment, based on these challenging findings, indicates that key clinical interventions include immunotherapy, such as immunoassay, oncolytic viral therapy, and chimeric antigen receptor T (CAR T) cell therapy, which are of great importance in both diagnosis and therapy. Relatively, vaccine therapy reflects the untapped confidence to enhance GBM outcomes. Ongoing advances in immunotherapy, which utilizes different methods to regenerate or modify the resistant body for cancer therapy, have revealed serious results with many different problems and difficulties for patients. Safe checkpoint inhibitors, adoptive cellular treatment, cellular and peptide antibodies, and other innovations give researchers an endless cluster of instruments to plan profoundly in personalized medicine and the potential for combination techniques. In this way, antibodies that block immune checkpoints, particularly those that target the program death 1 (PD-1)/PD-1 (PD-L1) ligand pathway, have improved prognosis in a wide range of diseases. However, its use in combination with chemotherapy, radiation therapy, or monotherapy is ineffective in treating GBM. The purpose of this review is to provide an up-to-date overview of the translational elements concentrating on the immunotherapeutic field of GBM alongside describing the molecular mechanism involved in GBM and related signaling pathways, presenting both historical perspectives and future directions underlying basic and clinical practice.
期刊介绍:
As the official publication of the National Cancer Institute, Cairo University, the Journal of the Egyptian National Cancer Institute (JENCI) is an open access peer-reviewed journal that publishes on the latest innovations in oncology and thereby, providing academics and clinicians a leading research platform. JENCI welcomes submissions pertaining to all fields of basic, applied and clinical cancer research. Main topics of interest include: local and systemic anticancer therapy (with specific interest on applied cancer research from developing countries); experimental oncology; early cancer detection; randomized trials (including negatives ones); and key emerging fields of personalized medicine, such as molecular pathology, bioinformatics, and biotechnologies.