Manuel Jesús León-Cobo , Angélica Enrique-Navarro , Ana Bartual , Laura Prieto
{"title":"Impact of warming and acidification of the Mediterranean Sea on statolith formation of the scyphozoan jellyfish Rhizostoma pulmo Macri (1778)","authors":"Manuel Jesús León-Cobo , Angélica Enrique-Navarro , Ana Bartual , Laura Prieto","doi":"10.1016/j.marenvres.2024.106788","DOIUrl":null,"url":null,"abstract":"<div><div>Ocean warming and acidification negatively affect organisms and biogeochemical cycles. To date, emphasis has been placed on the study of the impact on the structures of calcifying species; however, there is limited knowledge about the influence of the increase of these two variables on the solid structures of non-calcifying species as jellyfish. Here, we study the effects that the increase of temperature and acidity would cause on the statoliths of newly released ephyrae of the Mediterranean jellyfish <em>Rhizostoma pulmo</em>. Six combinations of temperature and <em>P</em><sub><em>CO2</em></sub> (18, 24 and 30 °C with a <em>P</em><sub><em>CO2</em></sub> of 500 and 1000 ppm each), according to the projections of the SSP5-8.5 (IPCC, 2021) scenario for the year 2100, were applied during 32 days to different groups of polyps randomly selected. Statoliths of the released ephyrae were counted and their size was measured. Our results show that, even though neither temperature nor <em>P</em><sub><em>CO2</em></sub> increase exerted a representative effect on the amount of statoliths synthesized in newly released ephyra from <em>R. pulmo</em>, it did exert an impact on the size of these structures: warming led to the formation of larger statoliths, while the rise in <em>P</em><sub><em>CO2</em></sub> induced the production of smaller structures. Under the simultaneous increase of both variables, acidification attenuated the effects of temperature, but still slightly larger statoliths were synthesized. The size differences observed in these structures could negatively impact the equilibrium system of this jellyfish species, potentially affecting its ability to survive.</div></div>","PeriodicalId":18204,"journal":{"name":"Marine environmental research","volume":"202 ","pages":"Article 106788"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine environmental research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141113624004495","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Ocean warming and acidification negatively affect organisms and biogeochemical cycles. To date, emphasis has been placed on the study of the impact on the structures of calcifying species; however, there is limited knowledge about the influence of the increase of these two variables on the solid structures of non-calcifying species as jellyfish. Here, we study the effects that the increase of temperature and acidity would cause on the statoliths of newly released ephyrae of the Mediterranean jellyfish Rhizostoma pulmo. Six combinations of temperature and PCO2 (18, 24 and 30 °C with a PCO2 of 500 and 1000 ppm each), according to the projections of the SSP5-8.5 (IPCC, 2021) scenario for the year 2100, were applied during 32 days to different groups of polyps randomly selected. Statoliths of the released ephyrae were counted and their size was measured. Our results show that, even though neither temperature nor PCO2 increase exerted a representative effect on the amount of statoliths synthesized in newly released ephyra from R. pulmo, it did exert an impact on the size of these structures: warming led to the formation of larger statoliths, while the rise in PCO2 induced the production of smaller structures. Under the simultaneous increase of both variables, acidification attenuated the effects of temperature, but still slightly larger statoliths were synthesized. The size differences observed in these structures could negatively impact the equilibrium system of this jellyfish species, potentially affecting its ability to survive.
期刊介绍:
Marine Environmental Research publishes original research papers on chemical, physical, and biological interactions in the oceans and coastal waters. The journal serves as a forum for new information on biology, chemistry, and toxicology and syntheses that advance understanding of marine environmental processes.
Submission of multidisciplinary studies is encouraged. Studies that utilize experimental approaches to clarify the roles of anthropogenic and natural causes of changes in marine ecosystems are especially welcome, as are those studies that represent new developments of a theoretical or conceptual aspect of marine science. All papers published in this journal are reviewed by qualified peers prior to acceptance and publication. Examples of topics considered to be appropriate for the journal include, but are not limited to, the following:
– The extent, persistence, and consequences of change and the recovery from such change in natural marine systems
– The biochemical, physiological, and ecological consequences of contaminants to marine organisms and ecosystems
– The biogeochemistry of naturally occurring and anthropogenic substances
– Models that describe and predict the above processes
– Monitoring studies, to the extent that their results provide new information on functional processes
– Methodological papers describing improved quantitative techniques for the marine sciences.