Role of Morphology on Zinc Oxide Nanostructures for Efficient Photoelectrochemical Activity and Hydrogen Production.

IF 3.1 3区 材料科学 Q3 CHEMISTRY, PHYSICAL Materials Pub Date : 2024-10-21 DOI:10.3390/ma17205135
Ahmad Fallatah, Mohammed Kuku, Laila Alqahtani, Almqdad Bubshait, Noha S Almutairi, Sonal Padalkar, Abdullah M Alotaibi
{"title":"Role of Morphology on Zinc Oxide Nanostructures for Efficient Photoelectrochemical Activity and Hydrogen Production.","authors":"Ahmad Fallatah, Mohammed Kuku, Laila Alqahtani, Almqdad Bubshait, Noha S Almutairi, Sonal Padalkar, Abdullah M Alotaibi","doi":"10.3390/ma17205135","DOIUrl":null,"url":null,"abstract":"<p><p>Energy generation today heavily relies on the field of photocatalysis, with many conventional energy generation strategies now superseded by the conversion of solar energy into chemical or thermal energy for a variety of energy-related applications. Global warming has pointed to the urgent necessity of moving away from non-renewable energy sources, with a resulting emphasis on creating the best photocatalysts for effective solar conversion by investigating a variety of material systems and material combinations. The present study explores the influence of morphological changes on the photoelectrochemical activity of zinc oxide nanostructures by exploiting electrodeposition and capping agents to control the growth rates of different ZnO facets and obtain well-defined nanostructures and orientations. A zinc nitrate (Zn (NO<sub>3</sub>)<sub>2</sub>) bath was used to electrodeposit ZnO nanostructures on an indium tin oxide glass (ITO) substrate at 70 °C with an applied potential of -1.0 V. Ethylenediamine (EDA) or ammonium fluoride (NH<sub>4</sub>F) were added as capping agents to the zinc nitrate bath. Extensive evaluation and characterization of the photoelectrochemical (PEC) capabilities of the resulting morphology-controlled zinc oxide nanostructures confirmed that altering the ZnO morphology can have positive impacts on PEC properties.</p>","PeriodicalId":18281,"journal":{"name":"Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509430/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/ma17205135","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Energy generation today heavily relies on the field of photocatalysis, with many conventional energy generation strategies now superseded by the conversion of solar energy into chemical or thermal energy for a variety of energy-related applications. Global warming has pointed to the urgent necessity of moving away from non-renewable energy sources, with a resulting emphasis on creating the best photocatalysts for effective solar conversion by investigating a variety of material systems and material combinations. The present study explores the influence of morphological changes on the photoelectrochemical activity of zinc oxide nanostructures by exploiting electrodeposition and capping agents to control the growth rates of different ZnO facets and obtain well-defined nanostructures and orientations. A zinc nitrate (Zn (NO3)2) bath was used to electrodeposit ZnO nanostructures on an indium tin oxide glass (ITO) substrate at 70 °C with an applied potential of -1.0 V. Ethylenediamine (EDA) or ammonium fluoride (NH4F) were added as capping agents to the zinc nitrate bath. Extensive evaluation and characterization of the photoelectrochemical (PEC) capabilities of the resulting morphology-controlled zinc oxide nanostructures confirmed that altering the ZnO morphology can have positive impacts on PEC properties.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
形态对高效光电化学活性和制氢的氧化锌纳米结构的作用。
当今的能源生产在很大程度上依赖于光催化领域,许多传统的能源生产策略现已被将太阳能转化为化学能或热能以用于各种能源相关应用所取代。全球变暖表明,迫切需要摒弃不可再生能源,因此,人们强调通过研究各种材料系统和材料组合来创造最佳光催化剂,以实现有效的太阳能转换。本研究通过利用电沉积和封盖剂来控制不同氧化锌面的生长速度,并获得定义明确的纳米结构和取向,从而探索形态变化对氧化锌纳米结构光电化学活性的影响。使用硝酸锌(Zn (NO3)2)槽在 70 °C、-1.0 V 的外加电位下在铟锡氧化物玻璃(ITO)基底上电沉积氧化锌纳米结构。硝酸锌槽中添加了乙二胺(EDA)或氟化铵(NH4F)作为封端剂。对由此产生的形态受控氧化锌纳米结构的光电化学(PEC)能力进行的广泛评估和表征证实,改变氧化锌的形态可对 PEC 特性产生积极影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials
Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
5.80
自引率
14.70%
发文量
7753
审稿时长
1.2 months
期刊介绍: Materials (ISSN 1996-1944) is an open access journal of related scientific research and technology development. It publishes reviews, regular research papers (articles) and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Materials provides a forum for publishing papers which advance the in-depth understanding of the relationship between the structure, the properties or the functions of all kinds of materials. Chemical syntheses, chemical structures and mechanical, chemical, electronic, magnetic and optical properties and various applications will be considered.
期刊最新文献
Application of Linear Mixed-Effects Model, Principal Component Analysis, and Clustering to Direct Energy Deposition Fabricated Parts Using FEM Simulation Data. Assessment of Various Mitigation Strategies of Alkali-Silica Reactions in Concrete Using Accelerated Mortar Test. Bandgap Characteristics of Boron-Containing Nitrides-Ab Initio Study for Optoelectronic Applications. CsPbBr3 and Cs2AgBiBr6 Composite Thick Films with Potential Photodetector Applications. Determination of Lubrication Layer Thickness and Its Effect on Concrete Pumping Pressure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1