Kai Bittner, Nikolaos Margaritis, Falk Schulze-Küppers, Jörg Wolters, Ghaleb Natour
{"title":"Computational Fluid Dynamics Modelling of Hydrogen Production via Water Splitting in Oxygen Membrane Reactors.","authors":"Kai Bittner, Nikolaos Margaritis, Falk Schulze-Küppers, Jörg Wolters, Ghaleb Natour","doi":"10.3390/membranes14100219","DOIUrl":null,"url":null,"abstract":"<p><p>The utilization of oxygen transport membranes enables the production of high-purity hydrogen by the thermal decomposition of water below 1000 °C. This process is based on a chemical potential gradient across the membrane, which is usually achieved by introducing a reducing gas. Computational fluid dynamics (CFD) can be used to model reactors based on this concept. In this study, a modelling approach for water splitting is presented in which oxygen transport through the membrane acts as the rate-determining process for the overall reaction. This transport step is implemented in the CFD simulation. Both gas compartments are modelled in the simulations. Hydrogen and methane are used as reducing gases. The model is validated using experimental data from the literature and compared with a simplified perfect mixing modelling approach. Although the main focus of this work is to propose an approach to implement the water splitting in CFD simulations, a simulation study was conducted to exemplify how CFD modelling can be utilized in design optimization. Simplified 2-dimensional and rotational symmetric reactor geometries were compared. This study shows that a parallel overflow of the membrane in an elongated reactor is advantageous, as this reduces the back diffusion of the reaction products, which increases the mean driving force for oxygen transport through the membrane.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14100219","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The utilization of oxygen transport membranes enables the production of high-purity hydrogen by the thermal decomposition of water below 1000 °C. This process is based on a chemical potential gradient across the membrane, which is usually achieved by introducing a reducing gas. Computational fluid dynamics (CFD) can be used to model reactors based on this concept. In this study, a modelling approach for water splitting is presented in which oxygen transport through the membrane acts as the rate-determining process for the overall reaction. This transport step is implemented in the CFD simulation. Both gas compartments are modelled in the simulations. Hydrogen and methane are used as reducing gases. The model is validated using experimental data from the literature and compared with a simplified perfect mixing modelling approach. Although the main focus of this work is to propose an approach to implement the water splitting in CFD simulations, a simulation study was conducted to exemplify how CFD modelling can be utilized in design optimization. Simplified 2-dimensional and rotational symmetric reactor geometries were compared. This study shows that a parallel overflow of the membrane in an elongated reactor is advantageous, as this reduces the back diffusion of the reaction products, which increases the mean driving force for oxygen transport through the membrane.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.