3D Light-Direction Sensor Based on Segmented Concentric Nanorings Combined with Deep Learning.

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Micromachines Pub Date : 2024-09-30 DOI:10.3390/mi15101219
Pengcheng Huang, Peijin Wu, Ziyuan Guo, Zhicheng Ye
{"title":"3D Light-Direction Sensor Based on Segmented Concentric Nanorings Combined with Deep Learning.","authors":"Pengcheng Huang, Peijin Wu, Ziyuan Guo, Zhicheng Ye","doi":"10.3390/mi15101219","DOIUrl":null,"url":null,"abstract":"<p><p>High-precision, ultra-thin angular detectable imaging upon a single pixel holds significant promise for light-field detection and reconstruction, thereby catalyzing advancements in machine vision and interaction technology. Traditional light-direction angle sensors relying on optical components like gratings and lenses face inherent constraints from diffraction limits in achieving device miniaturization. Recently, angle sensors via coupled double nanowires have demonstrated prowess in attaining high-precision angle perception of incident light at sub-wavelength device scales, which may herald a novel design paradigm for ultra-compact angle sensors. However, the current approach to measuring the three-dimensional (3D) incident light direction is unstable. In this paper, we propose a sensor concept capable of discerning the 3D light-direction based on a segmented concentric nanoring structure that is sensitive to both elevation angle (θ) and azimuth angle (ϕ) at a micrometer device scale and is validated through simulations. Through deep learning (DL) analysis and prediction, our simulations reveal that for angle scanning with a step size of 1°, the device can still achieve a detection range of 0∼360° for ϕ and 45°∼90° for θ, with an average accuracy of 0.19°, and DL can further solve some data aliasing problems to expand the sensing range. Our design broadens the angle sensing dimension based on mutual resonance coupling among nanoring segments, and through waveguide implementation or sensor array arrangements, the detection range can be flexibly adjusted to accommodate diverse application scenarios.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509479/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101219","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

High-precision, ultra-thin angular detectable imaging upon a single pixel holds significant promise for light-field detection and reconstruction, thereby catalyzing advancements in machine vision and interaction technology. Traditional light-direction angle sensors relying on optical components like gratings and lenses face inherent constraints from diffraction limits in achieving device miniaturization. Recently, angle sensors via coupled double nanowires have demonstrated prowess in attaining high-precision angle perception of incident light at sub-wavelength device scales, which may herald a novel design paradigm for ultra-compact angle sensors. However, the current approach to measuring the three-dimensional (3D) incident light direction is unstable. In this paper, we propose a sensor concept capable of discerning the 3D light-direction based on a segmented concentric nanoring structure that is sensitive to both elevation angle (θ) and azimuth angle (ϕ) at a micrometer device scale and is validated through simulations. Through deep learning (DL) analysis and prediction, our simulations reveal that for angle scanning with a step size of 1°, the device can still achieve a detection range of 0∼360° for ϕ and 45°∼90° for θ, with an average accuracy of 0.19°, and DL can further solve some data aliasing problems to expand the sensing range. Our design broadens the angle sensing dimension based on mutual resonance coupling among nanoring segments, and through waveguide implementation or sensor array arrangements, the detection range can be flexibly adjusted to accommodate diverse application scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分段同心纳米环与深度学习的 3D 光向传感器
单像素高精度、超薄角度检测成像技术为光场检测和重建带来了巨大前景,从而推动了机器视觉和交互技术的进步。传统的光向角度传感器依赖于光栅和透镜等光学元件,在实现器件微型化的过程中面临着衍射极限的固有限制。最近,通过耦合双纳米线设计的角度传感器证明了在亚波长器件尺度上实现入射光高精度角度感知的能力,这可能预示着超小型角度传感器的新设计模式。然而,目前测量三维(3D)入射光方向的方法并不稳定。在本文中,我们提出了一种能够辨别三维光向的传感器概念,它基于分段式同心纳米结构,在微米器件尺度上对仰角(θ)和方位角(j)都很敏感,并通过仿真进行了验证。通过深度学习(DL)分析和预测,我们的仿真结果表明,对于步长为 1° 的角度扫描,该器件仍可实现 0∼360° 的ϕ检测范围和 45°∼90° 的θ检测范围,平均精度为 0.19°。我们的设计拓宽了角度传感的维度,基于纳米线段之间的相互共振耦合,通过波导实现或传感器阵列排列,可灵活调整检测范围,以适应不同的应用场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Micromachines
Micromachines NANOSCIENCE & NANOTECHNOLOGY-INSTRUMENTS & INSTRUMENTATION
CiteScore
5.20
自引率
14.70%
发文量
1862
审稿时长
16.31 days
期刊介绍: Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
A Sub-1 ppm/°C Reference Voltage Source with a Wide Input Range. A Thorough Review of Emerging Technologies in Micro- and Nanochannel Fabrication: Limitations, Applications, and Comparison. Integration of Metrology in Grinding and Polishing Processes for Rotationally Symmetrical Aspherical Surfaces with Optimized Material Removal Functions. Investigation on the Machinability of Polycrystalline ZnS by Micro-Laser-Assisted Diamond Cutting. Optimal Control of FSBB Converter with Aquila Optimizer-Based PID Controller.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1