Enhanced Photoelectrochemical Water Splitting of In2S3 Photoanodes by Surface Modulation with 2D MoS2 Nanosheets.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Nanomaterials Pub Date : 2024-10-11 DOI:10.3390/nano14201628
Roshani Awanthika Jayarathna, Jun-Ho Heo, Eui-Tae Kim
{"title":"Enhanced Photoelectrochemical Water Splitting of In<sub>2</sub>S<sub>3</sub> Photoanodes by Surface Modulation with 2D MoS<sub>2</sub> Nanosheets.","authors":"Roshani Awanthika Jayarathna, Jun-Ho Heo, Eui-Tae Kim","doi":"10.3390/nano14201628","DOIUrl":null,"url":null,"abstract":"<p><p>Photoanodes with ample visible-light absorption and efficient photogenerated charge carrier dynamics expedite the actualization of high-efficiency photoelectrochemical water splitting (PEC-WS). Herein, we fabricated the heterojunction nanostructures of In<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> on indium-doped tin oxide glass substrates by indium sputtering and sulfurization, followed by the metal-organic chemical vapor deposition of 2D MoS<sub>2</sub> nanosheets (NSs). The photocurrent density of In<sub>2</sub>S<sub>3</sub>/MoS<sub>2</sub> was substantially enhanced and higher than those of pristine In<sub>2</sub>S<sub>3</sub> and MoS<sub>2</sub> NSs. This improvement is due to the MoS<sub>2</sub> NSs extending the visible-light absorption range and the type-II heterojunction enhancing the separation and transfer of photogenerated electron-hole pairs. This work offers a promising avenue toward the development of an efficient photoanode for solar-driven PEC-WS.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509911/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201628","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photoanodes with ample visible-light absorption and efficient photogenerated charge carrier dynamics expedite the actualization of high-efficiency photoelectrochemical water splitting (PEC-WS). Herein, we fabricated the heterojunction nanostructures of In2S3/MoS2 on indium-doped tin oxide glass substrates by indium sputtering and sulfurization, followed by the metal-organic chemical vapor deposition of 2D MoS2 nanosheets (NSs). The photocurrent density of In2S3/MoS2 was substantially enhanced and higher than those of pristine In2S3 and MoS2 NSs. This improvement is due to the MoS2 NSs extending the visible-light absorption range and the type-II heterojunction enhancing the separation and transfer of photogenerated electron-hole pairs. This work offers a promising avenue toward the development of an efficient photoanode for solar-driven PEC-WS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过二维 MoS2 纳米片的表面调制增强 In2S3 光阳极的光电化学水分离能力
光阳极具有充足的可见光吸收能力和高效的光生电荷载流子动力学特性,可加快实现高效光电化学分水(PEC-WS)。在此,我们通过铟溅射和硫化,在掺铟氧化锡玻璃基底上制备了 In2S3/MoS2 异质结纳米结构,然后进行了二维 MoS2 纳米片(NSs)的金属有机化学气相沉积。In2S3/MoS2 的光电流密度大大提高,高于原始 In2S3 和 MoS2 NSs 的光电流密度。这种改善是由于 MoS2 NSs 扩大了可见光吸收范围,而 II 型异质结增强了光生电子-空穴对的分离和转移。这项工作为开发太阳能驱动的 PEC-WS 的高效光阳极提供了一条前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
期刊最新文献
Enhancing Charge Trapping Performance of Hafnia Thin Films Using Sequential Plasma Atomic Layer Deposition. Flexible All-Carbon Nanoarchitecture Built from In Situ Formation of Nanoporous Graphene Within "Skeletal-Capillary" Carbon Nanotube Networks for Supercapacitors. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Phonon Drag Contribution to Thermopower for a Heated Metal Nanoisland on a Semiconductor Substrate. On the Synthesis of Graphene Oxide/Titanium Dioxide (GO/TiO2) Nanorods and Their Application as Saturable Absorbers for Passive Q-Switched Fiber Lasers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1