Alexander Arkhipov, Karina Trofimovich, Nikolay Arkhipov, Pavel Gabdullin
{"title":"Phonon Drag Contribution to Thermopower for a Heated Metal Nanoisland on a Semiconductor Substrate.","authors":"Alexander Arkhipov, Karina Trofimovich, Nikolay Arkhipov, Pavel Gabdullin","doi":"10.3390/nano14201684","DOIUrl":null,"url":null,"abstract":"<p><p>The possible contribution of phonon drag effect to the thermoelectrically sustained potential of a heated nanoisland on a semiconductor surface was estimated in a first principal consideration. We regarded electrons and phonons as interacting particles, and the interaction cross-section was derived from the basic theory of semiconductors. The solution of the equation of motion for average electrons under the simultaneous action of phonon drag and electric field gave the distributions of phonon flux, density of charge carriers and electric potential. Dimensional suppression of thermal conductance and electron-phonon interaction were accounted for but found to be less effective than expected. The developed model predicts the formation of a layer with a high density of charge carriers that is practically independent of the concentration of dopant ions. This layer can effectively intercept the phonon flow propagating from the heated nanoisland. The resulting thermoEMF can have sufficient magnitudes to explain the low-voltage electron emission capability of nanoisland films of metals and sp<sup>2</sup>-bonded carbon, previously studied by our group. The phenomenon predicted by the model can be used in thermoelectric converters with untypical parameters or in systems for local cooling.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 20","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509935/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201684","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The possible contribution of phonon drag effect to the thermoelectrically sustained potential of a heated nanoisland on a semiconductor surface was estimated in a first principal consideration. We regarded electrons and phonons as interacting particles, and the interaction cross-section was derived from the basic theory of semiconductors. The solution of the equation of motion for average electrons under the simultaneous action of phonon drag and electric field gave the distributions of phonon flux, density of charge carriers and electric potential. Dimensional suppression of thermal conductance and electron-phonon interaction were accounted for but found to be less effective than expected. The developed model predicts the formation of a layer with a high density of charge carriers that is practically independent of the concentration of dopant ions. This layer can effectively intercept the phonon flow propagating from the heated nanoisland. The resulting thermoEMF can have sufficient magnitudes to explain the low-voltage electron emission capability of nanoisland films of metals and sp2-bonded carbon, previously studied by our group. The phenomenon predicted by the model can be used in thermoelectric converters with untypical parameters or in systems for local cooling.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.