Vassilis M Papadakis, Markos Petousis, Nikolaos Michailidis, Maria Spyridaki, Ioannis Valsamos, Apostolos Argyros, Katerina Gkagkanatsiou, Amalia Moutsopoulou, Nectarios Vidakis
{"title":"Printability Metrics and Engineering Response of HDPE/Si<sub>3</sub>N<sub>4</sub> Nanocomposites in MEX Additive Manufacturing.","authors":"Vassilis M Papadakis, Markos Petousis, Nikolaos Michailidis, Maria Spyridaki, Ioannis Valsamos, Apostolos Argyros, Katerina Gkagkanatsiou, Amalia Moutsopoulou, Nectarios Vidakis","doi":"10.3390/nano14201680","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, silicon nitride (Si<sub>3</sub>N<sub>4</sub>) was the selected additive to be examined for its reinforcing properties on high-density polyethylene (HDPE) by exploiting techniques of the popular material extrusion (MEX) 3D printing method. Six different HDPE/Si<sub>3</sub>N<sub>4</sub> composites with filler percentages ranging between 0.0-10.0 wt. %, having a 2.0 step, were produced initially in compounds, then in filaments, and later in the form of specimens, to be examined by a series of tests. Thermal, rheological, mechanical, structural, and morphological analyses were also performed. For comprehensive mechanical characterization, tensile, flexural, microhardness (M-H), and Charpy impacts were included. Scanning electron microscopy (SME) was used for morphological assessments and microcomputed tomography (μ-CT). Raman spectroscopy was conducted, and the elemental composition was assessed using energy-dispersive spectroscopy (EDS). The HDPE/Si<sub>3</sub>N<sub>4</sub> composite with 6.0 wt. % was the one with an enhancing performance higher than the rest of the composites, in the majority of the mechanical metrics (more than 20% in the tensile and flexural experiment), showing a strong potential for Si<sub>3</sub>N<sub>4</sub> as a reinforcement additive in 3D printing. This method can be easily industrialized by further exploiting the MEX 3D printing method.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 20","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510129/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201680","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, silicon nitride (Si3N4) was the selected additive to be examined for its reinforcing properties on high-density polyethylene (HDPE) by exploiting techniques of the popular material extrusion (MEX) 3D printing method. Six different HDPE/Si3N4 composites with filler percentages ranging between 0.0-10.0 wt. %, having a 2.0 step, were produced initially in compounds, then in filaments, and later in the form of specimens, to be examined by a series of tests. Thermal, rheological, mechanical, structural, and morphological analyses were also performed. For comprehensive mechanical characterization, tensile, flexural, microhardness (M-H), and Charpy impacts were included. Scanning electron microscopy (SME) was used for morphological assessments and microcomputed tomography (μ-CT). Raman spectroscopy was conducted, and the elemental composition was assessed using energy-dispersive spectroscopy (EDS). The HDPE/Si3N4 composite with 6.0 wt. % was the one with an enhancing performance higher than the rest of the composites, in the majority of the mechanical metrics (more than 20% in the tensile and flexural experiment), showing a strong potential for Si3N4 as a reinforcement additive in 3D printing. This method can be easily industrialized by further exploiting the MEX 3D printing method.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.