Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis.

IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2024-10-24 DOI:10.1038/s41592-024-02482-5
Olivia Pfeil-Gardiner, Higor Vinícius Dias Rosa, Dietmar Riedel, Yu Seby Chen, Dominique Lörks, Pirmin Kükelhan, Martin Linck, Heiko Müller, Filip Van Petegem, Bonnie J Murphy
{"title":"Elemental mapping in single-particle reconstructions by reconstructed electron energy-loss analysis.","authors":"Olivia Pfeil-Gardiner, Higor Vinícius Dias Rosa, Dietmar Riedel, Yu Seby Chen, Dominique Lörks, Pirmin Kükelhan, Martin Linck, Heiko Müller, Filip Van Petegem, Bonnie J Murphy","doi":"10.1038/s41592-024-02482-5","DOIUrl":null,"url":null,"abstract":"<p><p>For macromolecular structures determined by cryogenic electron microscopy, no technique currently exists for mapping elements to defined locations, leading to errors in the assignment of metals and other ions, cofactors, substrates, inhibitors and lipids that play essential roles in activity and regulation. Elemental mapping in the electron microscope is well established for dose-tolerant samples but is challenging for biological samples, especially in a cryo-preserved state. Here we combine electron energy-loss spectroscopy with single-particle image processing to allow elemental mapping in cryo-preserved macromolecular complexes. Proof-of-principle data show that our method, reconstructed electron energy-loss (REEL) analysis, allows a three-dimensional reconstruction of electron energy-loss spectroscopy data, such that a high total electron dose is accumulated across many copies of a complex. Working with two test samples, we demonstrate that we can reliably localize abundant elements. We discuss the current limitations of the method and potential future developments.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41592-024-02482-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

For macromolecular structures determined by cryogenic electron microscopy, no technique currently exists for mapping elements to defined locations, leading to errors in the assignment of metals and other ions, cofactors, substrates, inhibitors and lipids that play essential roles in activity and regulation. Elemental mapping in the electron microscope is well established for dose-tolerant samples but is challenging for biological samples, especially in a cryo-preserved state. Here we combine electron energy-loss spectroscopy with single-particle image processing to allow elemental mapping in cryo-preserved macromolecular complexes. Proof-of-principle data show that our method, reconstructed electron energy-loss (REEL) analysis, allows a three-dimensional reconstruction of electron energy-loss spectroscopy data, such that a high total electron dose is accumulated across many copies of a complex. Working with two test samples, we demonstrate that we can reliably localize abundant elements. We discuss the current limitations of the method and potential future developments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过重建电子能量损失分析绘制单粒子重建中的元素图谱。
对于通过低温电子显微镜确定的大分子结构,目前还没有将元素映射到确定位置的技术,这导致在分配金属和其他离子、辅助因子、底物、抑制剂和脂质时出现误差,而这些元素在活动和调节中起着至关重要的作用。在电子显微镜下绘制元素图谱对于剂量耐受性样品来说已经非常成熟,但对于生物样品,尤其是低温保存状态的生物样品来说,则具有挑战性。在这里,我们将电子能量损失光谱与单粒子图像处理相结合,实现了低温保存的大分子复合物的元素图谱绘制。原理验证数据表明,我们的重建电子能量损失(REEL)分析方法可以对电子能量损失光谱数据进行三维重建,从而在复合物的多个副本中累积高电子总剂量。通过两个测试样本,我们证明了我们可以可靠地定位丰富的元素。我们讨论了该方法目前的局限性和未来的潜在发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
CelloType: a unified model for segmentation and classification of tissue images. Super-resolution imaging of fast morphological dynamics of neurons in behaving animals. Accurate RNA 3D structure prediction using a language model-based deep learning approach. Large language modeling and deep learning shed light on RNA structure prediction. A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1