首页 > 最新文献

Nature Methods最新文献

英文 中文
Rate variation and recurrent sequence errors in pandemic-scale phylogenetics. 大流行系统发育中的比率变异和反复序列错误。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-09 DOI: 10.1038/s41592-025-02932-8
Nicola De Maio, Myrthe Willemsen, Samuel Martin, Zihao Guo, Abhratanu Saha, Martin Hunt, Nhan Ly-Trong, Bui Quang Minh, Zamin Iqbal, Nick Goldman

Phylogenetic analyses of genome sequences from infectious pathogens reveal essential information regarding their evolution and transmission, as seen during the coronavirus disease 2019 pandemic. Recently developed pandemic-scale phylogenetic inference methods reduce the computational demand of phylogenetic reconstruction from genomic epidemiological datasets, allowing the analysis of millions of closely related genomes. However, widespread homoplasies, due to recurrent mutations and sequence errors, cause phylogenetic uncertainty and biases. We present algorithms and models to substantially improve the computational performance and accuracy of pandemic-scale phylogenetics. In particular, we account for, and identify, mutation rate variation and recurrent sequence errors. We reconstruct a reliable and public sequence alignment and phylogenetic tree of >2 million severe acute respiratory syndrome coronavirus 2 genomes encapsulating the evolutionary history and global spread of the virus up to February 2023.

传染性病原体基因组序列的系统发育分析揭示了其进化和传播的重要信息,正如2019年冠状病毒大流行期间所看到的那样。最近开发的大流行级系统发育推断方法减少了从基因组流行病学数据集进行系统发育重建的计算需求,允许分析数百万个密切相关的基因组。然而,由于反复发生的突变和序列错误,广泛的同源性导致了系统发育的不确定性和偏差。我们提出了算法和模型,以大大提高大流行尺度系统发育的计算性能和准确性。特别是,我们解释,并确定,突变率变异和反复出现的序列错误。我们重建了一个可靠的、公开的bb220万个严重急性呼吸综合征冠状病毒2基因组序列比对和系统发育树,涵盖了截至2023年2月该病毒的进化史和全球传播。
{"title":"Rate variation and recurrent sequence errors in pandemic-scale phylogenetics.","authors":"Nicola De Maio, Myrthe Willemsen, Samuel Martin, Zihao Guo, Abhratanu Saha, Martin Hunt, Nhan Ly-Trong, Bui Quang Minh, Zamin Iqbal, Nick Goldman","doi":"10.1038/s41592-025-02932-8","DOIUrl":"https://doi.org/10.1038/s41592-025-02932-8","url":null,"abstract":"<p><p>Phylogenetic analyses of genome sequences from infectious pathogens reveal essential information regarding their evolution and transmission, as seen during the coronavirus disease 2019 pandemic. Recently developed pandemic-scale phylogenetic inference methods reduce the computational demand of phylogenetic reconstruction from genomic epidemiological datasets, allowing the analysis of millions of closely related genomes. However, widespread homoplasies, due to recurrent mutations and sequence errors, cause phylogenetic uncertainty and biases. We present algorithms and models to substantially improve the computational performance and accuracy of pandemic-scale phylogenetics. In particular, we account for, and identify, mutation rate variation and recurrent sequence errors. We reconstruct a reliable and public sequence alignment and phylogenetic tree of >2 million severe acute respiratory syndrome coronavirus 2 genomes encapsulating the evolutionary history and global spread of the virus up to February 2023.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146150223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep-coverage single-cell metabolomics enabled by ion mobility-resolved mass cytometry. 深度覆盖单细胞代谢组学由离子迁移分辨的细胞计数仪实现。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-09 DOI: 10.1038/s41592-025-02970-2
Mingdu Luo, Tianzhang Kou, Yandong Yin, Shengyi Zhou, Xiaolan Zhu, Xinhao Zeng, Junhao Hu, Zheng-Jiang Zhu

Current single-cell metabolomics approaches are limited by insufficient sensitivity, robustness and metabolite coverage. We present an ion mobility-resolved mass cytometry technology that integrates high-throughput single-cell injection with ion mobility-mass spectrometry for multidimensional metabolomic profiling. Ion mobility-enabled selective ion accumulation and cell superposition-based amplification strategies substantially enhance sensitivity, robustness and overall analytical performance. Combined with our computational tool, MetCell, this technology allows high-throughput analysis while achieving exceptional profiling depth, detecting over 5,000 metabolic peaks and annotating approximately 800 metabolites per cell-representing a 3-fold to 10-fold improvement over existing methods. It offers attomole-level sensitivity and captures a broad dynamic range of metabolites within individual cells. Applied to 45,603 primary liver cells from aging mice, it enabled accurate cell-type and cell-subtype annotation and revealed distinct metabolic states and heterogeneity in hepatocytes during aging. This platform sets a new benchmark for high-throughput single-cell metabolomics, advancing our understanding of metabolic heterogeneity at single-cell resolution.

目前的单细胞代谢组学方法受到灵敏度、稳健性和代谢物覆盖范围不足的限制。我们提出了一种离子迁移分辨的质谱技术,该技术将高通量单细胞注射与离子迁移质谱相结合,用于多维代谢组学分析。离子迁移激活的选择性离子积累和基于细胞叠加的扩增策略大大提高了灵敏度、鲁棒性和整体分析性能。结合我们的计算工具MetCell,该技术可以实现高通量分析,同时实现卓越的分析深度,检测超过5000个代谢峰,每个细胞注释大约800种代谢物,比现有方法提高了3到10倍。它提供原子摩尔级别的灵敏度,并捕获单个细胞内代谢物的广泛动态范围。应用于衰老小鼠的45603个原代肝细胞,实现了准确的细胞类型和细胞亚型注释,揭示了衰老过程中肝细胞不同的代谢状态和异质性。该平台为高通量单细胞代谢组学设定了新的基准,促进了我们对单细胞分辨率代谢异质性的理解。
{"title":"Deep-coverage single-cell metabolomics enabled by ion mobility-resolved mass cytometry.","authors":"Mingdu Luo, Tianzhang Kou, Yandong Yin, Shengyi Zhou, Xiaolan Zhu, Xinhao Zeng, Junhao Hu, Zheng-Jiang Zhu","doi":"10.1038/s41592-025-02970-2","DOIUrl":"https://doi.org/10.1038/s41592-025-02970-2","url":null,"abstract":"<p><p>Current single-cell metabolomics approaches are limited by insufficient sensitivity, robustness and metabolite coverage. We present an ion mobility-resolved mass cytometry technology that integrates high-throughput single-cell injection with ion mobility-mass spectrometry for multidimensional metabolomic profiling. Ion mobility-enabled selective ion accumulation and cell superposition-based amplification strategies substantially enhance sensitivity, robustness and overall analytical performance. Combined with our computational tool, MetCell, this technology allows high-throughput analysis while achieving exceptional profiling depth, detecting over 5,000 metabolic peaks and annotating approximately 800 metabolites per cell-representing a 3-fold to 10-fold improvement over existing methods. It offers attomole-level sensitivity and captures a broad dynamic range of metabolites within individual cells. Applied to 45,603 primary liver cells from aging mice, it enabled accurate cell-type and cell-subtype annotation and revealed distinct metabolic states and heterogeneity in hepatocytes during aging. This platform sets a new benchmark for high-throughput single-cell metabolomics, advancing our understanding of metabolic heterogeneity at single-cell resolution.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146150273","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addressing pandemic-wide systematic errors in the SARS-CoV-2 phylogeny. 解决大流行范围内SARS-CoV-2系统发育的系统性错误。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-02-09 DOI: 10.1038/s41592-025-02947-1
Martin Hunt, Angie S Hinrichs, Daniel Anderson, Lily Karim, Bethany L Dearlove, Jeff Knaggs, Bede Constantinides, Philip W Fowler, Gillian Rodger, Teresa Street, Sheila Lumley, Hermione Webster, Theo Sanderson, Christopher Ruis, Benjamin Kotzen, Nicola de Maio, Lucas N Amenga-Etego, Dominic S Y Amuzu, Martin Avaro, Gordon A Awandare, Reuben Ayivor-Djanie, Timothy Barkham, Matthew Bashton, Elizabeth M Batty, Yaw Bediako, Denise De Belder, Estefania Benedetti, Andreas Bergthaler, Stefan A Boers, Josefina Campos, Rosina Afua Ampomah Carr, Yuan Yi Constance Chen, Facundo Cuba, Maria Elena Dattero, Wanwisa Dejnirattisai, Alexander Dilthey, Kwabena Obeng Duedu, Lukas Endler, Ilka Engelmann, Ngiambudulu M Francisco, Jonas Fuchs, Etienne Z Gnimpieba, Soraya Groc, Jones Gyamfi, Dennis Heemskerk, Torsten Houwaart, Nei-Yuan Hsiao, Matthew Huska, Martin Hölzer, Arash Iranzadeh, Hanna Jarva, Chandima Jeewandara, Bani Jolly, Rageema Joseph, Ravi Kant, Karrie Ko Kwan Ki, Satu Kurkela, Maija Lappalainen, Marie Lataretu, Jacob Lemieux, Chang Liu, Gathsaurie Neelika Malavige, Tapfumanei Mashe, Juthathip Mongkolsapaya, Brigitte Montes, Jose Arturo Molina Mora, Collins M Morang'a, Bernard Mvula, Niranjan Nagarajan, Andrew Nelson, Joyce M Ngoi, Joana Paula da Paixão, Marcus Panning, Tomas Poklepovich, Peter K Quashie, Diyanath Ranasinghe, Mara Russo, James Emmanuel San, Nicholas D Sanderson, Vinod Scaria, Gavin Screaton, October Michael Sessions, Tarja Sironen, Abay Sisay, Darren Smith, Teemu Smura, Piyada Supasa, Chayaporn Suphavilai, Jeremy Swann, Houriiyah Tegally, Bryan Tegomoh, Olli Vapalahti, Andreas Walker, Robert J Wilkinson, Carolyn Williamson, Xavier Zair, Tulio de Oliveira, Timothy Ea Peto, Derrick Crook, Russell Corbett-Detig, Zamin Iqbal

The majority of SARS-CoV-2 genomes obtained during the pandemic were derived by amplifying overlapping windows of the genome ('tiled amplicons'), reconstructing their sequences and fitting them together. This leads to systematic errors in genomes unless the software is both aware of the amplicon scheme and of the error modes of amplicon sequencing. Additionally, over time, amplicon schemes need to be updated as new mutations in the virus interfere with the primer binding sites at the end of amplicons. Thus, waves of variants swept the world during the pandemic and were followed by waves of systematic errors in the genomes, which had significant impacts on the inferred phylogenetic tree.Here we reconstruct the genomes from all public data as of June 2024 using an assembly tool called Viridian ( https://github.com/iqbal-lab-org/viridian ), developed to rigorously process amplicon sequence data. With these high-quality consensus sequences we provide a global phylogenetic tree of 4,471,579 samples, viewable at https://viridian.taxonium.org . We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny.

在大流行期间获得的大多数SARS-CoV-2基因组是通过放大基因组的重叠窗口(“平铺扩增子”),重建其序列并将它们组装在一起而获得的。这将导致基因组中的系统错误,除非软件既知道扩增子方案又知道扩增子测序的错误模式。此外,随着时间的推移,扩增子方案需要更新,因为病毒中的新突变会干扰扩增子末端的引物结合位点。因此,在大流行期间,变异浪潮席卷了世界,随后是基因组中的系统错误浪潮,这对推断的系统发育树产生了重大影响。在这里,我们使用名为Viridian (https://github.com/iqbal-lab-org/viridian)的组装工具从截至2024年6月的所有公开数据中重建基因组,该工具是为严格处理扩增子序列数据而开发的。通过这些高质量的一致序列,我们提供了一个包含4,471,579个样本的全球系统发育树,可在https://viridian.taxonium.org上查看。我们提供了该方法的模拟和经验验证,并量化了系统发育的改进。
{"title":"Addressing pandemic-wide systematic errors in the SARS-CoV-2 phylogeny.","authors":"Martin Hunt, Angie S Hinrichs, Daniel Anderson, Lily Karim, Bethany L Dearlove, Jeff Knaggs, Bede Constantinides, Philip W Fowler, Gillian Rodger, Teresa Street, Sheila Lumley, Hermione Webster, Theo Sanderson, Christopher Ruis, Benjamin Kotzen, Nicola de Maio, Lucas N Amenga-Etego, Dominic S Y Amuzu, Martin Avaro, Gordon A Awandare, Reuben Ayivor-Djanie, Timothy Barkham, Matthew Bashton, Elizabeth M Batty, Yaw Bediako, Denise De Belder, Estefania Benedetti, Andreas Bergthaler, Stefan A Boers, Josefina Campos, Rosina Afua Ampomah Carr, Yuan Yi Constance Chen, Facundo Cuba, Maria Elena Dattero, Wanwisa Dejnirattisai, Alexander Dilthey, Kwabena Obeng Duedu, Lukas Endler, Ilka Engelmann, Ngiambudulu M Francisco, Jonas Fuchs, Etienne Z Gnimpieba, Soraya Groc, Jones Gyamfi, Dennis Heemskerk, Torsten Houwaart, Nei-Yuan Hsiao, Matthew Huska, Martin Hölzer, Arash Iranzadeh, Hanna Jarva, Chandima Jeewandara, Bani Jolly, Rageema Joseph, Ravi Kant, Karrie Ko Kwan Ki, Satu Kurkela, Maija Lappalainen, Marie Lataretu, Jacob Lemieux, Chang Liu, Gathsaurie Neelika Malavige, Tapfumanei Mashe, Juthathip Mongkolsapaya, Brigitte Montes, Jose Arturo Molina Mora, Collins M Morang'a, Bernard Mvula, Niranjan Nagarajan, Andrew Nelson, Joyce M Ngoi, Joana Paula da Paixão, Marcus Panning, Tomas Poklepovich, Peter K Quashie, Diyanath Ranasinghe, Mara Russo, James Emmanuel San, Nicholas D Sanderson, Vinod Scaria, Gavin Screaton, October Michael Sessions, Tarja Sironen, Abay Sisay, Darren Smith, Teemu Smura, Piyada Supasa, Chayaporn Suphavilai, Jeremy Swann, Houriiyah Tegally, Bryan Tegomoh, Olli Vapalahti, Andreas Walker, Robert J Wilkinson, Carolyn Williamson, Xavier Zair, Tulio de Oliveira, Timothy Ea Peto, Derrick Crook, Russell Corbett-Detig, Zamin Iqbal","doi":"10.1038/s41592-025-02947-1","DOIUrl":"https://doi.org/10.1038/s41592-025-02947-1","url":null,"abstract":"<p><p>The majority of SARS-CoV-2 genomes obtained during the pandemic were derived by amplifying overlapping windows of the genome ('tiled amplicons'), reconstructing their sequences and fitting them together. This leads to systematic errors in genomes unless the software is both aware of the amplicon scheme and of the error modes of amplicon sequencing. Additionally, over time, amplicon schemes need to be updated as new mutations in the virus interfere with the primer binding sites at the end of amplicons. Thus, waves of variants swept the world during the pandemic and were followed by waves of systematic errors in the genomes, which had significant impacts on the inferred phylogenetic tree.Here we reconstruct the genomes from all public data as of June 2024 using an assembly tool called Viridian ( https://github.com/iqbal-lab-org/viridian ), developed to rigorously process amplicon sequence data. With these high-quality consensus sequences we provide a global phylogenetic tree of 4,471,579 samples, viewable at https://viridian.taxonium.org . We provide simulation and empirical validation of the methodology, and quantify the improvement in the phylogeny.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146150245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Take a dive into seascape genomics. 来看看海景基因组学吧。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-26 DOI: 10.1038/s41592-026-03002-3
Vivien Marx
{"title":"Take a dive into seascape genomics.","authors":"Vivien Marx","doi":"10.1038/s41592-026-03002-3","DOIUrl":"https://doi.org/10.1038/s41592-026-03002-3","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146053226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
It's poster time. 海报时间到了。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-22 DOI: 10.1038/s41592-025-03001-w
Vivien Marx
{"title":"It's poster time.","authors":"Vivien Marx","doi":"10.1038/s41592-025-03001-w","DOIUrl":"https://doi.org/10.1038/s41592-025-03001-w","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146030412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MaAsLin 3: refining and extending generalized multivariable linear models for meta-omic association discovery. MaAsLin 3:改进和扩展元组关联发现的广义多变量线性模型。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-15 DOI: 10.1038/s41592-025-02923-9
William A Nickols, Thomas Kuntz, Jiaxian Shen, Sagun Maharjan, Himel Mallick, Eric A Franzosa, Kelsey N Thompson, Jacob T Nearing, Curtis Huttenhower

Microbial community analysis typically involves determining which microbial features are associated with properties such as environmental or health phenotypes. This task is impeded by data characteristics, including sparsity (technical or biological) and compositionality. Here we introduce MaAsLin 3 (microbiome multivariable associations with linear models) to simultaneously identify both abundance and prevalence relationships in microbiome studies with modern, potentially complex designs. MaAsLin 3 can newly account for compositionality either experimentally (for example, quantitative PCR or spike-ins) or computationally, and it expands the range of testable biological hypotheses and covariate types. On a variety of synthetic and real datasets, MaAsLin 3 outperformed state-of-the-art differential abundance methods, and when applied to the Inflammatory Bowel Disease Multi-omics Database, MaAsLin 3 corroborated previously reported associations, identifying 77% with feature prevalence rather than abundance. In summary, MaAsLin 3 enables researchers to identify microbiome associations more accurately and specifically, especially in complex datasets.

微生物群落分析通常涉及确定哪些微生物特征与诸如环境或健康表型之类的特性相关。这项任务受到数据特性的阻碍,包括稀疏性(技术或生物)和组合性。在这里,我们引入了MaAsLin 3(微生物组多变量关联线性模型),以同时确定现代微生物组研究中丰度和流行度的关系,可能是复杂的设计。MaAsLin 3可以通过实验(例如,定量PCR或尖刺插入)或计算来解释新的组合性,并且它扩大了可测试的生物学假设和协变量类型的范围。在各种合成和真实数据集上,MaAsLin 3优于最先进的差异丰度方法,当应用于炎症性肠病多组学数据库时,MaAsLin 3证实了先前报道的关联,确定了77%的特征患病率而不是丰度。总之,MaAsLin 3使研究人员能够更准确、更具体地识别微生物组的关联,特别是在复杂的数据集中。
{"title":"MaAsLin 3: refining and extending generalized multivariable linear models for meta-omic association discovery.","authors":"William A Nickols, Thomas Kuntz, Jiaxian Shen, Sagun Maharjan, Himel Mallick, Eric A Franzosa, Kelsey N Thompson, Jacob T Nearing, Curtis Huttenhower","doi":"10.1038/s41592-025-02923-9","DOIUrl":"10.1038/s41592-025-02923-9","url":null,"abstract":"<p><p>Microbial community analysis typically involves determining which microbial features are associated with properties such as environmental or health phenotypes. This task is impeded by data characteristics, including sparsity (technical or biological) and compositionality. Here we introduce MaAsLin 3 (microbiome multivariable associations with linear models) to simultaneously identify both abundance and prevalence relationships in microbiome studies with modern, potentially complex designs. MaAsLin 3 can newly account for compositionality either experimentally (for example, quantitative PCR or spike-ins) or computationally, and it expands the range of testable biological hypotheses and covariate types. On a variety of synthetic and real datasets, MaAsLin 3 outperformed state-of-the-art differential abundance methods, and when applied to the Inflammatory Bowel Disease Multi-omics Database, MaAsLin 3 corroborated previously reported associations, identifying 77% with feature prevalence rather than abundance. In summary, MaAsLin 3 enables researchers to identify microbiome associations more accurately and specifically, especially in complex datasets.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145985178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integration of imaging-based and sequencing-based spatial omics mapping on the same tissue section via DBiTplus. 基于成像和基于测序的空间组学在同一组织切片上的整合。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-15 DOI: 10.1038/s41592-025-02948-0
Archibald Enninful, Zhaojun Zhang, Dmytro Klymyshyn, Matthew Ingalls, Mingyu Yang, Hailing Zong, Zhiliang Bai, Negin Farzad, Graham Su, Alev Baysoy, Jungmin Nam, Yao Lu, Shuozhen Bao, Siyan Deng, Nancy R Zhang, Oliver Braubach, Mina L Xu, Zongming Ma, Rong Fan

Spatially mapping the transcriptome and proteome in the same tissue section can profoundly advance our understanding of cellular heterogeneity and function. Here we present Deterministic Barcoding in Tissue sequencing plus (DBiTplus), an integrative multimodal spatial omics approach combining sequencing-based spatial transcriptomics and multiplexed protein imaging on the same section, enabling both single-cell-resolution cell typing and transcriptome-wide interrogation of biological pathways. DBiTplus utilizes spatial barcoding and RNase H-mediated cDNA retrieval, preserving tissue architecture for multiplexed protein imaging. We developed computational pipelines to integrate these modalities, allowing imaging-guided deconvolution to generate single-cell-resolved spatial transcriptome atlases. We demonstrate DBiTplus across diverse samples including frozen mouse embryos, and formalin-fixed paraffin-embedded human lymph nodes and lymphoma tissues, highlighting its compatibility with challenging clinical specimens. DBiTplus uncovered mechanisms of lymphomagenesis, progression and transformation in human lymphomas. Thus, DBiTplus is a unified workflow for spatially resolved single-cell atlasing and unbiased exploration of biological mechanisms in a cell-by-cell manner at transcriptome scale.

在同一组织切片中对转录组和蛋白质组进行空间定位可以深刻地促进我们对细胞异质性和功能的理解。在这里,我们提出了组织测序plus中的确定性条形码(DBiTplus),这是一种综合的多模态空间组学方法,结合了基于测序的空间转录组学和同一切片上的多重蛋白质成像,可以实现单细胞分辨率的细胞分型和转录组范围的生物途径询问。DBiTplus利用空间条形码和RNase h介导的cDNA检索,为多重蛋白质成像保留组织结构。我们开发了计算管道来整合这些模式,允许成像引导的反卷积生成单细胞分辨率的空间转录组图谱。我们在多种样品中展示了DBiTplus,包括冷冻小鼠胚胎,以及福尔马林固定石蜡包埋的人类淋巴结和淋巴瘤组织,强调了其与具有挑战性的临床标本的兼容性。DBiTplus揭示了人类淋巴瘤发生、进展和转化的机制。因此,DBiTplus是一个统一的工作流程,用于在转录组尺度上以逐个细胞的方式进行空间分辨的单细胞图谱和无偏的生物学机制探索。
{"title":"Integration of imaging-based and sequencing-based spatial omics mapping on the same tissue section via DBiTplus.","authors":"Archibald Enninful, Zhaojun Zhang, Dmytro Klymyshyn, Matthew Ingalls, Mingyu Yang, Hailing Zong, Zhiliang Bai, Negin Farzad, Graham Su, Alev Baysoy, Jungmin Nam, Yao Lu, Shuozhen Bao, Siyan Deng, Nancy R Zhang, Oliver Braubach, Mina L Xu, Zongming Ma, Rong Fan","doi":"10.1038/s41592-025-02948-0","DOIUrl":"10.1038/s41592-025-02948-0","url":null,"abstract":"<p><p>Spatially mapping the transcriptome and proteome in the same tissue section can profoundly advance our understanding of cellular heterogeneity and function. Here we present Deterministic Barcoding in Tissue sequencing plus (DBiTplus), an integrative multimodal spatial omics approach combining sequencing-based spatial transcriptomics and multiplexed protein imaging on the same section, enabling both single-cell-resolution cell typing and transcriptome-wide interrogation of biological pathways. DBiTplus utilizes spatial barcoding and RNase H-mediated cDNA retrieval, preserving tissue architecture for multiplexed protein imaging. We developed computational pipelines to integrate these modalities, allowing imaging-guided deconvolution to generate single-cell-resolved spatial transcriptome atlases. We demonstrate DBiTplus across diverse samples including frozen mouse embryos, and formalin-fixed paraffin-embedded human lymph nodes and lymphoma tissues, highlighting its compatibility with challenging clinical specimens. DBiTplus uncovered mechanisms of lymphomagenesis, progression and transformation in human lymphomas. Thus, DBiTplus is a unified workflow for spatially resolved single-cell atlasing and unbiased exploration of biological mechanisms in a cell-by-cell manner at transcriptome scale.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145985213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HumanBase: an interactive AI platform for human biology. HumanBase:人类生物学互动人工智能平台。
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-14 DOI: 10.1038/s41592-025-02994-8
Rachel S G Sealfon, Chandra L Theesfeld, Julien Funk, Natalie Sauerwald, Aaron K Wong, Olga G Troyanskaya
{"title":"HumanBase: an interactive AI platform for human biology.","authors":"Rachel S G Sealfon, Chandra L Theesfeld, Julien Funk, Natalie Sauerwald, Aaron K Wong, Olga G Troyanskaya","doi":"10.1038/s41592-025-02994-8","DOIUrl":"https://doi.org/10.1038/s41592-025-02994-8","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":32.1,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioprinting a human small intestine 生物打印人类小肠
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-12 DOI: 10.1038/s41592-025-02999-3
Michelle Korda
{"title":"Bioprinting a human small intestine","authors":"Michelle Korda","doi":"10.1038/s41592-025-02999-3","DOIUrl":"10.1038/s41592-025-02999-3","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"10-10"},"PeriodicalIF":32.1,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Trans-RNAs to program translation initiation 反式rna到程序翻译起始
IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2026-01-12 DOI: 10.1038/s41592-025-02998-4
Aparna Anantharaman
{"title":"Trans-RNAs to program translation initiation","authors":"Aparna Anantharaman","doi":"10.1038/s41592-025-02998-4","DOIUrl":"10.1038/s41592-025-02998-4","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"23 1","pages":"9-9"},"PeriodicalIF":32.1,"publicationDate":"2026-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145950799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1