首页 > 最新文献

Nature Methods最新文献

英文 中文
First-timers at a huge meeting. 第一次参加大型会议。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-19 DOI: 10.1038/s41592-024-02527-9
Vivien Marx
{"title":"First-timers at a huge meeting.","authors":"Vivien Marx","doi":"10.1038/s41592-024-02527-9","DOIUrl":"https://doi.org/10.1038/s41592-024-02527-9","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening. 用于复用漏检筛选的基准高效素材编辑平台。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-19 DOI: 10.1038/s41592-024-02502-4
Ann Cirincione, Danny Simpson, Weihao Yan, Ryan McNulty, Purnima Ravisankar, Sabrina C Solley, Jun Yan, Fabian Lim, Emma K Farley, Mona Singh, Britt Adamson

Prime editing installs precise edits into the genome with minimal unwanted byproducts, but low and variable editing efficiencies have complicated application of the approach to high-throughput functional genomics. Here we assembled a prime editing platform capable of high-efficiency substitution editing suitable for functional interrogation of small genetic variants. We benchmarked this platform for pooled, loss-of-function screening using a library of ~240,000 engineered prime editing guide RNAs (epegRNAs) targeting ~17,000 codons with 1-3 bp substitutions. Comparing the abundance of these epegRNAs across screen samples identified negative selection phenotypes for 7,996 nonsense mutations targeted to 1,149 essential genes and for synonymous mutations that disrupted splice site motifs at 3' exon boundaries. Rigorous evaluation of codon-matched controls demonstrated that these phenotypes were highly specific to the intended edit. Altogether, we established a prime editing approach for multiplexed, functional characterization of genetic variants with simple readouts.

基质编辑能在基因组中进行精确的编辑,并将不需要的副产品降至最低,但编辑效率低且不稳定,这使这种方法在高通量功能基因组学中的应用变得复杂。在这里,我们组装了一个能进行高效置换编辑的质粒编辑平台,适用于小基因变异的功能检测。我们利用一个由大约 24 万条工程化的质粒编辑向导 RNA(epegRNA)组成的文库,针对大约 1.7 万个 1-3 bp 的密码子进行了功能缺失筛选,并对该平台进行了基准测试。通过比较这些 epegRNA 在不同筛选样本中的丰度,发现了针对 1,149 个重要基因的 7,996 个无义突变以及破坏 3' 外显子边界剪接位点基团的同义突变的负选择表型。对密码子匹配对照的严格评估表明,这些表型对预期编辑具有高度特异性。总之,我们建立了一种主要的编辑方法,可以通过简单的读数对基因变异进行多重功能表征。
{"title":"A benchmarked, high-efficiency prime editing platform for multiplexed dropout screening.","authors":"Ann Cirincione, Danny Simpson, Weihao Yan, Ryan McNulty, Purnima Ravisankar, Sabrina C Solley, Jun Yan, Fabian Lim, Emma K Farley, Mona Singh, Britt Adamson","doi":"10.1038/s41592-024-02502-4","DOIUrl":"https://doi.org/10.1038/s41592-024-02502-4","url":null,"abstract":"<p><p>Prime editing installs precise edits into the genome with minimal unwanted byproducts, but low and variable editing efficiencies have complicated application of the approach to high-throughput functional genomics. Here we assembled a prime editing platform capable of high-efficiency substitution editing suitable for functional interrogation of small genetic variants. We benchmarked this platform for pooled, loss-of-function screening using a library of ~240,000 engineered prime editing guide RNAs (epegRNAs) targeting ~17,000 codons with 1-3 bp substitutions. Comparing the abundance of these epegRNAs across screen samples identified negative selection phenotypes for 7,996 nonsense mutations targeted to 1,149 essential genes and for synonymous mutations that disrupted splice site motifs at 3' exon boundaries. Rigorous evaluation of codon-matched controls demonstrated that these phenotypes were highly specific to the intended edit. Altogether, we established a prime editing approach for multiplexed, functional characterization of genetic variants with simple readouts.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision mutational scanning: your multipass to the future of genetics. 精准突变扫描:通往遗传学未来的多重通道。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-19 DOI: 10.1038/s41592-024-02522-0
Jonathan F Roth, Francisco J Sánchez-Rivera
{"title":"Precision mutational scanning: your multipass to the future of genetics.","authors":"Jonathan F Roth, Francisco J Sánchez-Rivera","doi":"10.1038/s41592-024-02522-0","DOIUrl":"https://doi.org/10.1038/s41592-024-02522-0","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Repurposing large-format microarrays for scalable spatial transcriptomics. 将大型微阵列重新用于可扩展的空间转录组学。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-19 DOI: 10.1038/s41592-024-02501-5
Denis Cipurko, Tatsuki Ueda, Linghan Mei, Nicolas Chevrier

Spatiomolecular analyses are key to study tissue functions and malfunctions. However, we lack profiling tools for spatial transcriptomics that are easy to adopt, low cost and scalable in terms of sample size and number. Here, we describe a method, Array-seq, to repurpose classical oligonucleotide microarrays for spatial transcriptomics profiling. We generate Array-seq slides from microarrays carrying custom-design probes that contain common sequences flanking unique barcodes at known coordinates. Then we perform a simple, two-step reaction that produces mRNA capture probes across all spots on the microarray. We demonstrate that Array-seq yields spatial transcriptomes with high detection sensitivity and localization specificity using histological sections from mouse tissues as test systems. Moreover, we show that the large surface area of Array-seq slides yields spatial transcriptomes (i) at high throughput by profiling multi-organ sections, (ii) in three dimensions by processing serial sections from one sample, and (iii) across whole human organs. Thus, by combining classical DNA microarrays and next-generation sequencing, we have created a simple and flexible platform for spatiomolecular studies of small-to-large specimens at scale.

空间分子分析是研究组织功能和故障的关键。然而,我们缺乏易于采用、成本低廉、可扩展样本大小和数量的空间转录组学分析工具。在这里,我们介绍一种将经典寡核苷酸芯片重新用于空间转录组学分析的方法--Array-seq。我们通过微阵列生成 Array-seq 幻灯片,微阵列上载有定制设计的探针,这些探针在已知坐标处包含独特条形码侧翼的常见序列。然后,我们进行简单的两步反应,在微阵列的所有点上产生 mRNA 捕获探针。我们以小鼠组织切片为测试系统,证明了 Array-seq 可产生具有高检测灵敏度和定位特异性的空间转录组。此外,我们还证明了 Array-seq 幻灯片的大表面积可产生空间转录组:(i) 通过对多个器官切片进行剖析,实现高通量;(ii) 通过处理来自一个样本的序列切片,实现三维;(iii) 跨整个人体器官。因此,通过结合经典的 DNA 微阵列和新一代测序技术,我们创建了一个简单而灵活的平台,可对从小到大的标本进行大规模的空间分子研究。
{"title":"Repurposing large-format microarrays for scalable spatial transcriptomics.","authors":"Denis Cipurko, Tatsuki Ueda, Linghan Mei, Nicolas Chevrier","doi":"10.1038/s41592-024-02501-5","DOIUrl":"https://doi.org/10.1038/s41592-024-02501-5","url":null,"abstract":"<p><p>Spatiomolecular analyses are key to study tissue functions and malfunctions. However, we lack profiling tools for spatial transcriptomics that are easy to adopt, low cost and scalable in terms of sample size and number. Here, we describe a method, Array-seq, to repurpose classical oligonucleotide microarrays for spatial transcriptomics profiling. We generate Array-seq slides from microarrays carrying custom-design probes that contain common sequences flanking unique barcodes at known coordinates. Then we perform a simple, two-step reaction that produces mRNA capture probes across all spots on the microarray. We demonstrate that Array-seq yields spatial transcriptomes with high detection sensitivity and localization specificity using histological sections from mouse tissues as test systems. Moreover, we show that the large surface area of Array-seq slides yields spatial transcriptomes (i) at high throughput by profiling multi-organ sections, (ii) in three dimensions by processing serial sections from one sample, and (iii) across whole human organs. Thus, by combining classical DNA microarrays and next-generation sequencing, we have created a simple and flexible platform for spatiomolecular studies of small-to-large specimens at scale.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142676384","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning. 利用自我监督深度学习克服低温电子显微镜中的首选方向问题。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-18 DOI: 10.1038/s41592-024-02505-1
Yun-Tao Liu, Hongcheng Fan, Jason J Hu, Z Hong Zhou

While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep learning-based software to address map anisotropy and particle misalignment caused by the preferred-orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet's ability to generate near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, β-galactosidases and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred-orientation problem.

虽然单颗粒低温电子显微镜技术的进步使大分子复合物的结构测定达到了原子分辨率,但颗粒定向偏差("优先 "定向问题)仍然是大多数标本的一个复杂问题。现有的解决方案依赖于应用于标本的生化和物理策略,通常非常复杂且具有挑战性。在此,我们开发了基于深度学习的端到端自监督软件 spIsoNet,以解决首选取向问题造成的图谱各向异性和粒子错位问题。利用首选方向视图恢复采样不足视图中的分子信息,spIsoNet 在三维重建过程中提高了角度各向同性和粒子对准精度。我们展示了 spIsoNet 从有限视图的代表性生物系统(包括核糖体、β-半乳糖苷酶和以前难以解决的血凝素三聚体数据集)生成接近各向同性重建的能力。因此,无需额外的标本制备程序,spIsoNet 就能为优先取向问题提供通用的计算解决方案。
{"title":"Overcoming the preferred-orientation problem in cryo-EM with self-supervised deep learning.","authors":"Yun-Tao Liu, Hongcheng Fan, Jason J Hu, Z Hong Zhou","doi":"10.1038/s41592-024-02505-1","DOIUrl":"10.1038/s41592-024-02505-1","url":null,"abstract":"<p><p>While advances in single-particle cryo-EM have enabled the structural determination of macromolecular complexes at atomic resolution, particle orientation bias (the 'preferred' orientation problem) remains a complication for most specimens. Existing solutions have relied on biochemical and physical strategies applied to the specimen and are often complex and challenging. Here, we develop spIsoNet, an end-to-end self-supervised deep learning-based software to address map anisotropy and particle misalignment caused by the preferred-orientation problem. Using preferred-orientation views to recover molecular information in under-sampled views, spIsoNet improves both angular isotropy and particle alignment accuracy during 3D reconstruction. We demonstrate spIsoNet's ability to generate near-isotropic reconstructions from representative biological systems with limited views, including ribosomes, β-galactosidases and a previously intractable hemagglutinin trimer dataset. spIsoNet can also be generalized to improve map isotropy and particle alignment of preferentially oriented molecules in subtomogram averaging. Therefore, without additional specimen-preparation procedures, spIsoNet provides a general computational solution to the preferred-orientation problem.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A foundation model unlocks unified biomedical image analysis. 一个基础模型开启了统一的生物医学图像分析。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-18 DOI: 10.1038/s41592-024-02519-9
Yuhao Huang, Haoran Dou, Dong Ni
{"title":"A foundation model unlocks unified biomedical image analysis.","authors":"Yuhao Huang, Haoran Dou, Dong Ni","doi":"10.1038/s41592-024-02519-9","DOIUrl":"10.1038/s41592-024-02519-9","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Content-aware motion correction for multi-shot imaging. 针对多镜头成像的内容感知运动校正。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-18 DOI: 10.1038/s41592-024-02520-2
Romain F Laine
{"title":"Content-aware motion correction for multi-shot imaging.","authors":"Romain F Laine","doi":"10.1038/s41592-024-02520-2","DOIUrl":"10.1038/s41592-024-02520-2","url":null,"abstract":"","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities. 九种模式生物医学对象联合分割、检测和识别的基础模型。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-18 DOI: 10.1038/s41592-024-02499-w
Theodore Zhao, Yu Gu, Jianwei Yang, Naoto Usuyama, Ho Hin Lee, Sid Kiblawi, Tristan Naumann, Jianfeng Gao, Angela Crabtree, Jacob Abel, Christine Moung-Wen, Brian Piening, Carlo Bifulco, Mu Wei, Hoifung Poon, Sheng Wang

Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery.

生物医学图像分析是生物医学发现的基础。整体图像分析包括分割、检测和识别等相互依存的子任务,而传统方法是将这些子任务分开处理的。在此,我们提出了生物医学基础模型 BiomedParse,它能在九种成像模式中联合进行分割、检测和识别。这种联合学习提高了单个任务的准确性,并实现了新的应用,例如通过文本描述分割图像中的所有相关对象。为了训练 BiomedParse,我们利用现有数据集中的自然语言标签或描述创建了一个大型数据集,其中包括 600 多万个图像、分割掩膜和文本描述的三元组。我们的研究表明,BiomedParse 在九种成像模式的图像分割方面优于现有方法,在不规则形状的物体上有更大的改进。我们还进一步证明,BiomedParse 可同时对图像中的所有物体进行分割和标注。总之,BiomedParse 是一种用于所有主要图像模式的生物医学图像分析的一体化工具,为基于图像的高效、准确的生物医学发现铺平了道路。
{"title":"A foundation model for joint segmentation, detection and recognition of biomedical objects across nine modalities.","authors":"Theodore Zhao, Yu Gu, Jianwei Yang, Naoto Usuyama, Ho Hin Lee, Sid Kiblawi, Tristan Naumann, Jianfeng Gao, Angela Crabtree, Jacob Abel, Christine Moung-Wen, Brian Piening, Carlo Bifulco, Mu Wei, Hoifung Poon, Sheng Wang","doi":"10.1038/s41592-024-02499-w","DOIUrl":"10.1038/s41592-024-02499-w","url":null,"abstract":"<p><p>Biomedical image analysis is fundamental for biomedical discovery. Holistic image analysis comprises interdependent subtasks such as segmentation, detection and recognition, which are tackled separately by traditional approaches. Here, we propose BiomedParse, a biomedical foundation model that can jointly conduct segmentation, detection and recognition across nine imaging modalities. This joint learning improves the accuracy for individual tasks and enables new applications such as segmenting all relevant objects in an image through a textual description. To train BiomedParse, we created a large dataset comprising over 6 million triples of image, segmentation mask and textual description by leveraging natural language labels or descriptions accompanying existing datasets. We showed that BiomedParse outperformed existing methods on image segmentation across nine imaging modalities, with larger improvement on objects with irregular shapes. We further showed that BiomedParse can simultaneously segment and label all objects in an image. In summary, BiomedParse is an all-in-one tool for biomedical image analysis on all major image modalities, paving the path for efficient and accurate image-based biomedical discovery.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanopore approaches for single-molecule temporal omics: promises and challenges. 纳米孔方法用于单分子时空 omics:前景与挑战。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-18 DOI: 10.1038/s41592-024-02492-3
Meng-Yin Li, Jie Jiang, Jun-Ge Li, Hongyan Niu, Yi-Lun Ying, Ruijun Tian, Yi-Tao Long

The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.

单细胞内分子的巨大异质性要求从单分子角度进行全息分析。此外,考虑到细胞内永恒的新陈代谢和交流,有必要确定分子库的时间序列变化,而不是只获取一个时间点的数据。因此,迫切需要为这种全息分析开发一种单分子策略,以阐明生物系统的异质性和时间动态。在本视角中,我们探讨了纳米孔在单分子时间全息分析中的潜在应用,以单分子和高通量的方式表征质量之外的单个分子。因此,我们从单分子质量鉴定、揭示单分子异质性和说明时间演变的角度,回顾了可用于单分子时间全息技术的纳米孔的最新进展。此外,我们还讨论了在复杂生物样本中使用纳米孔进行单分子时间全局分析所面临的主要挑战,并介绍了应对这些挑战的潜在策略和注意事项。
{"title":"Nanopore approaches for single-molecule temporal omics: promises and challenges.","authors":"Meng-Yin Li, Jie Jiang, Jun-Ge Li, Hongyan Niu, Yi-Lun Ying, Ruijun Tian, Yi-Tao Long","doi":"10.1038/s41592-024-02492-3","DOIUrl":"10.1038/s41592-024-02492-3","url":null,"abstract":"<p><p>The great molecular heterogeneity within single cells demands omics analysis from a single-molecule perspective. Moreover, considering the perpetual metabolism and communication within cells, it is essential to determine the time-series changes of the molecular library, rather than obtaining data at only one time point. Thus, there is an urgent need to develop a single-molecule strategy for this omics analysis to elucidate the biosystem heterogeneity and temporal dynamics. In this Perspective, we explore the potential application of nanopores for single-molecule temporal omics to characterize individual molecules beyond mass, in both a single-molecule and high-throughput manner. Accordingly, recent advances in nanopores available for single-molecule temporal omics are reviewed from the view of single-molecule mass identification, revealing single-molecule heterogeneity and illustrating temporal evolution. Furthermore, we discuss the primary challenges associated with using nanopores for single-molecule temporal omics in complex biological samples, and present the potential strategies and notes to respond to these challenges.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probe set selection for targeted spatial transcriptomics. 定向空间转录组学的探针组选择。
IF 36.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Pub Date : 2024-11-18 DOI: 10.1038/s41592-024-02496-z
Louis B Kuemmerle, Malte D Luecken, Alexandra B Firsova, Lisa Barros de Andrade E Sousa, Lena Straßer, Ilhem Isra Mekki, Francesco Campi, Lukas Heumos, Maiia Shulman, Valentina Beliaeva, Soroor Hediyeh-Zadeh, Anna C Schaar, Krishnaa T Mahbubani, Alexandros Sountoulidis, Tamás Balassa, Ferenc Kovacs, Peter Horvath, Marie Piraud, Ali Ertürk, Christos Samakovlis, Fabian J Theis

Targeted spatial transcriptomic methods capture the topology of cell types and states in tissues at single-cell and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing the spatial signals present in a tissue. This requires selecting the most informative, yet minimal, set of genes to profile (gene set selection) for which it is possible to build probes (probe design). However, current selections often rely on marker genes, precluding them from detecting continuous spatial signals or new states. We present Spapros, an end-to-end probe set selection pipeline that optimizes both gene set specificity for cell type identification and within-cell type expression variation to resolve spatially distinct populations while considering prior knowledge as well as probe design and expression constraints. We evaluated Spapros and show that it outperforms other selection approaches in both cell type recovery and recovering expression variation beyond cell types. Furthermore, we used Spapros to design a single-cell resolution in situ hybridization on tissues (SCRINSHOT) experiment of adult lung tissue to demonstrate how probes selected with Spapros identify cell types of interest and detect spatial variation even within cell types.

靶向空间转录组学方法通过测量一组预定义基因的表达,以单细胞和亚细胞分辨率捕捉组织中细胞类型和状态的拓扑结构。选择一组最佳的检测基因对于捕捉组织中存在的空间信号至关重要。这就需要选择信息量最大但又最小的一组基因进行剖析(基因组选择),并为其设计探针(探针设计)。然而,目前的选择通常依赖于标记基因,无法检测连续的空间信号或新状态。我们介绍了 Spapros,这是一种端到端探针组选择管道,它能优化用于细胞类型鉴定的基因组特异性和细胞类型内的表达变异,从而在考虑先验知识以及探针设计和表达限制的同时,解析空间上不同的群体。我们对 Spapros 进行了评估,结果表明它在细胞类型恢复和细胞类型外表达变异恢复方面都优于其他选择方法。此外,我们还利用 Spapros 设计了一个成人肺组织的单细胞分辨组织原位杂交(SCRINSHOT)实验,展示了用 Spapros 选择的探针如何识别感兴趣的细胞类型,甚至在细胞类型内部也能检测到空间变异。
{"title":"Probe set selection for targeted spatial transcriptomics.","authors":"Louis B Kuemmerle, Malte D Luecken, Alexandra B Firsova, Lisa Barros de Andrade E Sousa, Lena Straßer, Ilhem Isra Mekki, Francesco Campi, Lukas Heumos, Maiia Shulman, Valentina Beliaeva, Soroor Hediyeh-Zadeh, Anna C Schaar, Krishnaa T Mahbubani, Alexandros Sountoulidis, Tamás Balassa, Ferenc Kovacs, Peter Horvath, Marie Piraud, Ali Ertürk, Christos Samakovlis, Fabian J Theis","doi":"10.1038/s41592-024-02496-z","DOIUrl":"10.1038/s41592-024-02496-z","url":null,"abstract":"<p><p>Targeted spatial transcriptomic methods capture the topology of cell types and states in tissues at single-cell and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing the spatial signals present in a tissue. This requires selecting the most informative, yet minimal, set of genes to profile (gene set selection) for which it is possible to build probes (probe design). However, current selections often rely on marker genes, precluding them from detecting continuous spatial signals or new states. We present Spapros, an end-to-end probe set selection pipeline that optimizes both gene set specificity for cell type identification and within-cell type expression variation to resolve spatially distinct populations while considering prior knowledge as well as probe design and expression constraints. We evaluated Spapros and show that it outperforms other selection approaches in both cell type recovery and recovering expression variation beyond cell types. Furthermore, we used Spapros to design a single-cell resolution in situ hybridization on tissues (SCRINSHOT) experiment of adult lung tissue to demonstrate how probes selected with Spapros identify cell types of interest and detect spatial variation even within cell types.</p>","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":" ","pages":""},"PeriodicalIF":36.1,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142668356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Methods
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1