{"title":"Fabrication and Characterization of Co-Sensitized Dye Solar Cells Using Energy Transfer from Spiropyran Derivatives to SQ2 Dye.","authors":"Michihiro Hara, Ryuhei Ejima","doi":"10.3390/molecules29204896","DOIUrl":null,"url":null,"abstract":"<p><p>We developed dye-sensitized solar cells (DSSCs) using 1,5-carboxy-2-[[3-[(2,3-dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium and 1,3,3-trimethyl indolino-6'-nitrobenzopyrylospiran. The DSSCs incorporate photochromic molecules to regulate photoelectric conversion properties. We irradiated photoelectrodes adsorbed with SQ2/SPNO<sub>2</sub> using both UV and visible light and observed the color changes in these photoelectrodes. Following UV irradiation, the transmittance at 540 nm decreased by 20%, while it increased by 15% after visible light irradiation. This indicates that SPNO<sub>2</sub> on the DSSCs is photoisomerized from the spiropyran form (SP) to the photomerocyanine (PMC) form under UV light. The photoelectric conversion efficiency (<i>η</i>) of the DSSCs increased by 0.15% following 5 min of UV irradiation and decreased by 0.07% after 5 min of visible light irradiation. However, direct electron injection from PMC seems challenging, suggesting that the mechanism for improved photoelectric conversion in these DSSCs is likely due to Förster resonance energy transfer (FRET) from PMC to the SQ2 dye. The findings suggest that the co-sensitization of DSSCs by PMC-SQ2 and SQ2 alone, facilitated by their respective photoabsorption, results in externally responsive and co-sensitized solar cells. This study provides valuable insights into the development of advanced DSSCs with externally controllable photoelectric conversion properties via the strategic use of photochromic molecules and energy transfer mechanisms, advancing future solar energy applications.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510412/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204896","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
We developed dye-sensitized solar cells (DSSCs) using 1,5-carboxy-2-[[3-[(2,3-dihydro-1,1-dimethyl-3-ethyl-1H-benzo[e]indol-2-ylidene)methyl]-2-hydroxy-4-oxo-2-cyclobuten-1-ylidene]methyl]-3,3-dimethyl-1-octyl-3H-indolium and 1,3,3-trimethyl indolino-6'-nitrobenzopyrylospiran. The DSSCs incorporate photochromic molecules to regulate photoelectric conversion properties. We irradiated photoelectrodes adsorbed with SQ2/SPNO2 using both UV and visible light and observed the color changes in these photoelectrodes. Following UV irradiation, the transmittance at 540 nm decreased by 20%, while it increased by 15% after visible light irradiation. This indicates that SPNO2 on the DSSCs is photoisomerized from the spiropyran form (SP) to the photomerocyanine (PMC) form under UV light. The photoelectric conversion efficiency (η) of the DSSCs increased by 0.15% following 5 min of UV irradiation and decreased by 0.07% after 5 min of visible light irradiation. However, direct electron injection from PMC seems challenging, suggesting that the mechanism for improved photoelectric conversion in these DSSCs is likely due to Förster resonance energy transfer (FRET) from PMC to the SQ2 dye. The findings suggest that the co-sensitization of DSSCs by PMC-SQ2 and SQ2 alone, facilitated by their respective photoabsorption, results in externally responsive and co-sensitized solar cells. This study provides valuable insights into the development of advanced DSSCs with externally controllable photoelectric conversion properties via the strategic use of photochromic molecules and energy transfer mechanisms, advancing future solar energy applications.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.