{"title":"Influence of Electrostatic Field on Optical Rotation of D-Glucose Solution: Experimental Research for Electric Field-Induced Biological Effect.","authors":"Quanlin Guo, Dezhi Gou, Chenxi Zhao, Yun Ma, Chaojun Chen, Junxi Zhu","doi":"10.3390/molecules29204898","DOIUrl":null,"url":null,"abstract":"<p><p>At present, the effects of environmental electromagnetic irradiation on the metabolism of organisms have attracted extensive attention, but the mechanism is still not clear. D-glucose plays an important role in the metabolism of organisms. In this work, the change in the optical rotation of D-glucose solution under an electrostatic field is measured experimentally, so as to explain the mechanism of the electric field-induced biological effect. The experimental results show that the electrostatic field can alter the optical rotation of D-glucose solution at different temperatures. Under the different strengths of electrostatic field, the specific rotation of D-glucose solution increases at different temperatures; the maximum increase can reach 2.07%, but the effect of temperature and electric field strength on the rotation increment is nonlinear and very complex. Further, it turns out that the proportion of α-D-glucose in solution increases by up to 3.25% under the electrostatic field, while the proportion of β-D-glucose decreases by as much as 1.75%. The experimental study confirms that electrostatic field can change the proportion of two conformation molecules (α and β-D-glucose) in D-glucose solution, which can provide a novel explanation for the mechanism of the electric field-induced biological effect.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510495/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204898","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
At present, the effects of environmental electromagnetic irradiation on the metabolism of organisms have attracted extensive attention, but the mechanism is still not clear. D-glucose plays an important role in the metabolism of organisms. In this work, the change in the optical rotation of D-glucose solution under an electrostatic field is measured experimentally, so as to explain the mechanism of the electric field-induced biological effect. The experimental results show that the electrostatic field can alter the optical rotation of D-glucose solution at different temperatures. Under the different strengths of electrostatic field, the specific rotation of D-glucose solution increases at different temperatures; the maximum increase can reach 2.07%, but the effect of temperature and electric field strength on the rotation increment is nonlinear and very complex. Further, it turns out that the proportion of α-D-glucose in solution increases by up to 3.25% under the electrostatic field, while the proportion of β-D-glucose decreases by as much as 1.75%. The experimental study confirms that electrostatic field can change the proportion of two conformation molecules (α and β-D-glucose) in D-glucose solution, which can provide a novel explanation for the mechanism of the electric field-induced biological effect.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.