Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2024-10-21 DOI:10.3390/molecules29204976
Yitong Wang, Zetong Cheng, Junguo Li, Kuanxin Lv, Zhenzhen Li, Hang Zhao
{"title":"Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating.","authors":"Yitong Wang, Zetong Cheng, Junguo Li, Kuanxin Lv, Zhenzhen Li, Hang Zhao","doi":"10.3390/molecules29204976","DOIUrl":null,"url":null,"abstract":"<p><p>Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area of high-efficiency PSCs is typically limited to about 0.1 cm<sup>2</sup> in laboratory settings, with efficiency decreasing as the area increases. The limitation poses a major obstacle to commercialization, as large-area, high-quality perovskite films are crucial for commercial applications. This paper reviews current techniques for producing large-area perovskites, focusing on slot-die coating, a method that has attracted attention for its revolutionary potential in PSC manufacturing. Slot-die coating allows for precise control over film thickness and is compatible with roll-to-roll systems, making it suitable for large-scale applications. The paper systematically outlines the characteristics of slot-die coating, along with its advantages and disadvantages in commercial applications, suggests corresponding optimization strategies, and discusses future development directions to enhance the scalability and efficiency of PSCs, paving the way for broader commercial deployment.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204976","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area of high-efficiency PSCs is typically limited to about 0.1 cm2 in laboratory settings, with efficiency decreasing as the area increases. The limitation poses a major obstacle to commercialization, as large-area, high-quality perovskite films are crucial for commercial applications. This paper reviews current techniques for producing large-area perovskites, focusing on slot-die coating, a method that has attracted attention for its revolutionary potential in PSC manufacturing. Slot-die coating allows for precise control over film thickness and is compatible with roll-to-roll systems, making it suitable for large-scale applications. The paper systematically outlines the characteristics of slot-die coating, along with its advantages and disadvantages in commercial applications, suggests corresponding optimization strategies, and discusses future development directions to enhance the scalability and efficiency of PSCs, paving the way for broader commercial deployment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用狭缝涂层制造大面积 Perovskite 太阳能电池的创新方法。
过氧化物太阳能电池(PSC)因其卓越的光电性能和低廉的制造成本而在光伏产业中日益突出,其功率转换效率高达 26.4%,可与硅太阳能电池媲美。尽管取得了长足的进步,但在实验室环境中,高效 PSC 的有效面积通常限制在 0.1 平方厘米左右,而且效率会随着面积的增加而降低。这种限制对商业化构成了重大障碍,因为大面积、高质量的过氧化物薄膜对商业应用至关重要。本文回顾了当前生产大面积包光体的技术,重点介绍了槽模镀膜,这种方法因其在 PSC 生产中的革命性潜力而备受关注。槽模镀膜可精确控制薄膜厚度,并与卷对卷系统兼容,因此适合大规模应用。本文系统地概述了槽模镀膜的特点及其在商业应用中的优缺点,提出了相应的优化策略,并探讨了未来的发展方向,以提高 PSC 的可扩展性和效率,为更广泛的商业应用铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media. A Spin-Labeled Derivative of Gossypol. Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Effectiveness Evaluation of Silicone Oil Emulsion In Situ Polymerization for Dehydration of Waterlogged Wooden Artifacts. Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1