Research on the Electrochemical Impedance Spectroscopy Evolution of Sodium-Ion Batteries in Different States.

IF 4.2 2区 化学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecules Pub Date : 2024-10-20 DOI:10.3390/molecules29204963
Xiong Shu, Yongjing Li, Bowen Yang, Qiong Wang, Konlayutt Punyawudho
{"title":"Research on the Electrochemical Impedance Spectroscopy Evolution of Sodium-Ion Batteries in Different States.","authors":"Xiong Shu, Yongjing Li, Bowen Yang, Qiong Wang, Konlayutt Punyawudho","doi":"10.3390/molecules29204963","DOIUrl":null,"url":null,"abstract":"<p><p>Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundant availability of sodium, lower costs, and comparable electrochemical performance characteristics. A thorough understanding of their performance features is essential for the widespread adoption and application of SIBs. Therefore, in this study, we investigate the output characteristics and electrochemical impedance spectroscopy (EIS) features of sodium-ion batteries (SIBs) under various states. The research results show that, unlike conventional lithium iron phosphate (LFP) batteries, SIBs exhibit a strong linear relationship between state of charge (SOC) and open-circuit voltage (OCV) across various SOC and temperature conditions. Additionally, the discharge capacity of the battery remains relatively stable within a temperature range of 15 °C to 35 °C; when the temperatures are outside this range, the available capacity of the sodium-ion battery reduces significantly. Moreover, the EIS profiles in the high-frequency region are predominantly influenced by the ohmic internal resistance, which remains largely unaffected by SOC variations. In contrast, the low-frequency region demonstrates a significant correlation between SOC and impedance, with higher SOC values resulting in reduced impedance, indicated by smaller semicircle radii in the EIS curves. This finds highlights that EIS profiling can effectively monitor SOC and state of health (SOH) in SIBs, offering a clear correlation between impedance parameters and the battery's operational state. The research not only advances our understanding of the electrochemical properties of SIBs but also provides a valuable reference for the design and application of sodium-ion battery systems in various scenarios.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510599/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204963","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundant availability of sodium, lower costs, and comparable electrochemical performance characteristics. A thorough understanding of their performance features is essential for the widespread adoption and application of SIBs. Therefore, in this study, we investigate the output characteristics and electrochemical impedance spectroscopy (EIS) features of sodium-ion batteries (SIBs) under various states. The research results show that, unlike conventional lithium iron phosphate (LFP) batteries, SIBs exhibit a strong linear relationship between state of charge (SOC) and open-circuit voltage (OCV) across various SOC and temperature conditions. Additionally, the discharge capacity of the battery remains relatively stable within a temperature range of 15 °C to 35 °C; when the temperatures are outside this range, the available capacity of the sodium-ion battery reduces significantly. Moreover, the EIS profiles in the high-frequency region are predominantly influenced by the ohmic internal resistance, which remains largely unaffected by SOC variations. In contrast, the low-frequency region demonstrates a significant correlation between SOC and impedance, with higher SOC values resulting in reduced impedance, indicated by smaller semicircle radii in the EIS curves. This finds highlights that EIS profiling can effectively monitor SOC and state of health (SOH) in SIBs, offering a clear correlation between impedance parameters and the battery's operational state. The research not only advances our understanding of the electrochemical properties of SIBs but also provides a valuable reference for the design and application of sodium-ion battery systems in various scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
钠离子电池在不同状态下的电化学阻抗光谱演变研究。
钠离子电池(SIB)由于钠的供应充足、成本较低以及具有可比的电化学性能特点,已成为锂离子电池(LIB)的一种有前途的替代品。透彻了解其性能特点对于 SIB 的广泛采用和应用至关重要。因此,在本研究中,我们研究了钠离子电池(SIB)在不同状态下的输出特性和电化学阻抗谱(EIS)特征。研究结果表明,与传统的磷酸铁锂电池(LFP)不同,钠离子电池在不同的 SOC 和温度条件下,充电状态(SOC)和开路电压(OCV)之间呈现出很强的线性关系。此外,电池的放电容量在 15 ℃ 至 35 ℃ 的温度范围内保持相对稳定;当温度超出此范围时,钠离子电池的可用容量会显著降低。此外,高频区域的 EIS 曲线主要受欧姆内阻的影响,而欧姆内阻在很大程度上不受 SOC 变化的影响。相反,低频区的 SOC 与阻抗之间存在明显的相关性,SOC 值越高,阻抗越小,EIS 曲线中的半圆半径越小。这一发现突出表明,EIS 曲线能有效监测 SIB 的 SOC 和健康状态 (SOH),在阻抗参数和电池运行状态之间提供明确的相关性。这项研究不仅加深了我们对 SIB 电化学特性的理解,还为钠离子电池系统在各种情况下的设计和应用提供了有价值的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecules
Molecules 化学-有机化学
CiteScore
7.40
自引率
8.70%
发文量
7524
审稿时长
1.4 months
期刊介绍: Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.
期刊最新文献
A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media. A Spin-Labeled Derivative of Gossypol. Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Effectiveness Evaluation of Silicone Oil Emulsion In Situ Polymerization for Dehydration of Waterlogged Wooden Artifacts. Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1