Jv-Liang Dai , Mao-Mao Yan , Fang-Chun Wu, Hao-Hong Chen, Ming-Hua Liang, Jian-Guo Jiang
{"title":"Enhancing carotenoid accumulation in Dunaliella bardawil by combined treatments with fulvic acid and optimized culture conditions","authors":"Jv-Liang Dai , Mao-Mao Yan , Fang-Chun Wu, Hao-Hong Chen, Ming-Hua Liang, Jian-Guo Jiang","doi":"10.1016/j.plaphy.2024.109206","DOIUrl":null,"url":null,"abstract":"<div><div>Natural carotenoids from microalgae have received more attention as an alternative source. In this study, fulvic acid (FA), a plant growth regulator, was used to enhance carotenoid accumulation in microalgae <em>Dunaliella bardawil</em> rich in lutein. However, the addition of FA promoted pigment synthesis but also exhibited an inhibitory effect on biomass. Therefore, the optimization of culture conditions was performed to further enhance carotenoid accumulation, including high light stress (10,000 lx) and the two-stage cultivation comprising 1-aminocyclopropane-1-carboxylic acid (ACC) and FA. Under both culture conditions, the growth inhibition caused by FA was alleviated, leading to a further increase in the contents of chlorophylls and carotenoids. HPLC analysis revealed that the production of lutein, α-carotene and β-carotene increased by 0.44-, 0.37- and 0.54-fold under the treatment of 400 mg/L FA with high light intensity and 0.91-, 1.15–0.29-fold under the two-stage cultivation comprising 11 mM ACC and 500 mg/L FA. Furthermore, algal cells under FA treatment and the two-stage cultivation stained with Bodipy505/515 emitted stronger fluorescence under a laser confocal microscope, suggesting that lipid accumulation was increased. Additionally, the transcription levels of carotenogenic genes were also found to be up-regulated by qRT-PCR. These results indicated an enhancement in both the storage capacity and synthesis of carotenoids in <em>D. bardawil</em>. This study revealed the potential application of plant growth regulators in promoting carotenoid accumulation in <em>D. bardawil</em> which could be further improved by optimizing the culture conditions, providing a reference for efficient carotenoid production in microalgae.</div></div>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"217 ","pages":"Article 109206"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S098194282400874X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Natural carotenoids from microalgae have received more attention as an alternative source. In this study, fulvic acid (FA), a plant growth regulator, was used to enhance carotenoid accumulation in microalgae Dunaliella bardawil rich in lutein. However, the addition of FA promoted pigment synthesis but also exhibited an inhibitory effect on biomass. Therefore, the optimization of culture conditions was performed to further enhance carotenoid accumulation, including high light stress (10,000 lx) and the two-stage cultivation comprising 1-aminocyclopropane-1-carboxylic acid (ACC) and FA. Under both culture conditions, the growth inhibition caused by FA was alleviated, leading to a further increase in the contents of chlorophylls and carotenoids. HPLC analysis revealed that the production of lutein, α-carotene and β-carotene increased by 0.44-, 0.37- and 0.54-fold under the treatment of 400 mg/L FA with high light intensity and 0.91-, 1.15–0.29-fold under the two-stage cultivation comprising 11 mM ACC and 500 mg/L FA. Furthermore, algal cells under FA treatment and the two-stage cultivation stained with Bodipy505/515 emitted stronger fluorescence under a laser confocal microscope, suggesting that lipid accumulation was increased. Additionally, the transcription levels of carotenogenic genes were also found to be up-regulated by qRT-PCR. These results indicated an enhancement in both the storage capacity and synthesis of carotenoids in D. bardawil. This study revealed the potential application of plant growth regulators in promoting carotenoid accumulation in D. bardawil which could be further improved by optimizing the culture conditions, providing a reference for efficient carotenoid production in microalgae.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.