Cecilia De Vicariis, Vinil T Chackochan, Laura Bandini, Eleonora Ravaschio, Vittorio Sanguineti
{"title":"Computational joint action: Dynamical models to understand the development of joint coordination.","authors":"Cecilia De Vicariis, Vinil T Chackochan, Laura Bandini, Eleonora Ravaschio, Vittorio Sanguineti","doi":"10.1371/journal.pcbi.1011948","DOIUrl":null,"url":null,"abstract":"<p><p>Coordinating with others is part of our everyday experience. Previous studies using sensorimotor coordination games suggest that human dyads develop coordination strategies that can be interpreted as Nash equilibria. However, if the players are uncertain about what their partner is doing, they develop coordination strategies which are robust to the actual partner's actions. This has suggested that humans select their actions based on an explicit prediction of what the partner will be doing-a partner model-which is probabilistic by nature. However, the mechanisms underlying the development of a joint coordination over repeated trials remain unknown. Very much like sensorimotor adaptation of individuals to external perturbations (eg force fields or visual rotations), dynamical models may help to understand how joint coordination develops over repeated trials. Here we present a general computational model-based on game theory and Bayesian estimation-designed to understand the mechanisms underlying the development of a joint coordination over repeated trials. Joint tasks are modeled as quadratic games, where each participant's task is expressed as a quadratic cost function. Each participant predicts their partner's next move (partner model) by optimally combining predictions and sensory observations, and selects their actions through a stochastic optimization of its expected cost, given the partner model. The model parameters include perceptual uncertainty (sensory noise), partner representation (retention rate and internale noise), uncertainty in action selection and its rate of decay (which can be interpreted as the action's learning rate). The model can be used in two ways: (i) to simulate interactive behaviors, thus helping to make specific predictions in the context of a given joint action scenario; and (ii) to analyze the action time series in actual experiments, thus providing quantitative metrics that describe individual behaviors during an actual joint action. We demonstrate the model in a variety of joint action scenarios. In a sensorimotor version of the Stag Hunt game, the model predicts that different representations of the partner lead to different Nash equilibria. In a joint two via-point (2-VP) reaching task, in which the actions consist of complex trajectories, the model captures well the observed temporal evolution of performance. For this task we also estimated the model parameters from experimental observations, which provided a comprehensive characterization of individual dyad participants. Computational models of joint action may help identifying the factors preventing or facilitating the development of coordination. They can be used in clinical settings, to interpret the observed behaviors in individuals with impaired interaction capabilities. They may also provide a theoretical basis to devise artificial agents that establish forms of coordination that facilitate neuromotor recovery.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530078/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1011948","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Coordinating with others is part of our everyday experience. Previous studies using sensorimotor coordination games suggest that human dyads develop coordination strategies that can be interpreted as Nash equilibria. However, if the players are uncertain about what their partner is doing, they develop coordination strategies which are robust to the actual partner's actions. This has suggested that humans select their actions based on an explicit prediction of what the partner will be doing-a partner model-which is probabilistic by nature. However, the mechanisms underlying the development of a joint coordination over repeated trials remain unknown. Very much like sensorimotor adaptation of individuals to external perturbations (eg force fields or visual rotations), dynamical models may help to understand how joint coordination develops over repeated trials. Here we present a general computational model-based on game theory and Bayesian estimation-designed to understand the mechanisms underlying the development of a joint coordination over repeated trials. Joint tasks are modeled as quadratic games, where each participant's task is expressed as a quadratic cost function. Each participant predicts their partner's next move (partner model) by optimally combining predictions and sensory observations, and selects their actions through a stochastic optimization of its expected cost, given the partner model. The model parameters include perceptual uncertainty (sensory noise), partner representation (retention rate and internale noise), uncertainty in action selection and its rate of decay (which can be interpreted as the action's learning rate). The model can be used in two ways: (i) to simulate interactive behaviors, thus helping to make specific predictions in the context of a given joint action scenario; and (ii) to analyze the action time series in actual experiments, thus providing quantitative metrics that describe individual behaviors during an actual joint action. We demonstrate the model in a variety of joint action scenarios. In a sensorimotor version of the Stag Hunt game, the model predicts that different representations of the partner lead to different Nash equilibria. In a joint two via-point (2-VP) reaching task, in which the actions consist of complex trajectories, the model captures well the observed temporal evolution of performance. For this task we also estimated the model parameters from experimental observations, which provided a comprehensive characterization of individual dyad participants. Computational models of joint action may help identifying the factors preventing or facilitating the development of coordination. They can be used in clinical settings, to interpret the observed behaviors in individuals with impaired interaction capabilities. They may also provide a theoretical basis to devise artificial agents that establish forms of coordination that facilitate neuromotor recovery.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.