Anand V Sastry, Yuan Yuan, Saugat Poudel, Kevin Rychel, Reo Yoo, Cameron R Lamoureux, Gaoyuan Li, Joshua T Burrows, Siddharth Chauhan, Zachary B Haiman, Tahani Al Bulushi, Yara Seif, Bernhard O Palsson, Daniel C Zielinski
{"title":"iModulonMiner and PyModulon: Software for unsupervised mining of gene expression compendia.","authors":"Anand V Sastry, Yuan Yuan, Saugat Poudel, Kevin Rychel, Reo Yoo, Cameron R Lamoureux, Gaoyuan Li, Joshua T Burrows, Siddharth Chauhan, Zachary B Haiman, Tahani Al Bulushi, Yara Seif, Bernhard O Palsson, Daniel C Zielinski","doi":"10.1371/journal.pcbi.1012546","DOIUrl":null,"url":null,"abstract":"<p><p>Public gene expression databases are a rapidly expanding resource of organism responses to diverse perturbations, presenting both an opportunity and a challenge for bioinformatics workflows to extract actionable knowledge of transcription regulatory network function. Here, we introduce a five-step computational pipeline, called iModulonMiner, to compile, process, curate, analyze, and characterize the totality of RNA-seq data for a given organism or cell type. This workflow is centered around the data-driven computation of co-regulated gene sets using Independent Component Analysis, called iModulons, which have been shown to have broad applications. As a demonstration, we applied this workflow to generate the iModulon structure of Bacillus subtilis using all high-quality, publicly-available RNA-seq data. Using this structure, we predicted regulatory interactions for multiple transcription factors, identified groups of co-expressed genes that are putatively regulated by undiscovered transcription factors, and predicted properties of a recently discovered single-subunit phage RNA polymerase. We also present a Python package, PyModulon, with functions to characterize, visualize, and explore computed iModulons. The pipeline, available at https://github.com/SBRG/iModulonMiner, can be readily applied to diverse organisms to gain a rapid understanding of their transcriptional regulatory network structure and condition-specific activity.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534266/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012546","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Public gene expression databases are a rapidly expanding resource of organism responses to diverse perturbations, presenting both an opportunity and a challenge for bioinformatics workflows to extract actionable knowledge of transcription regulatory network function. Here, we introduce a five-step computational pipeline, called iModulonMiner, to compile, process, curate, analyze, and characterize the totality of RNA-seq data for a given organism or cell type. This workflow is centered around the data-driven computation of co-regulated gene sets using Independent Component Analysis, called iModulons, which have been shown to have broad applications. As a demonstration, we applied this workflow to generate the iModulon structure of Bacillus subtilis using all high-quality, publicly-available RNA-seq data. Using this structure, we predicted regulatory interactions for multiple transcription factors, identified groups of co-expressed genes that are putatively regulated by undiscovered transcription factors, and predicted properties of a recently discovered single-subunit phage RNA polymerase. We also present a Python package, PyModulon, with functions to characterize, visualize, and explore computed iModulons. The pipeline, available at https://github.com/SBRG/iModulonMiner, can be readily applied to diverse organisms to gain a rapid understanding of their transcriptional regulatory network structure and condition-specific activity.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.