Phenazine-1-carboxamide Regulates Pyruvate Dehydrogenase of Phytopathogenic Fungi to Control Tea Leaf Spot Caused by Didymella segeticola.

IF 2.6 2区 农林科学 Q2 PLANT SCIENCES Phytopathology Pub Date : 2024-10-22 DOI:10.1094/PHYTO-07-24-0209-R
Zeqi Qi, Fenghua Liu, Dongxue Li, Jiayu Yin, Delu Wang, Nazeer Ahmed, Yue Ma, Jing-Jiang Zhou, Zhuo Chen
{"title":"Phenazine-1-carboxamide Regulates Pyruvate Dehydrogenase of Phytopathogenic Fungi to Control Tea Leaf Spot Caused by <i>Didymella segeticola</i>.","authors":"Zeqi Qi, Fenghua Liu, Dongxue Li, Jiayu Yin, Delu Wang, Nazeer Ahmed, Yue Ma, Jing-Jiang Zhou, Zhuo Chen","doi":"10.1094/PHYTO-07-24-0209-R","DOIUrl":null,"url":null,"abstract":"<p><p>Due to a lack of understanding of the disease epidemiology and comprehensive control measures, tea leaf spot caused by <i>Didymella segeticola</i> has a significant negative impact on tea yield and quality in the tea plantations of Southwest China. Phenazine-1-carboxamide (PCN) is a phenazine compound derived from <i>Pseudomonas</i> species, which exhibits antimicrobial activity against various pathogens. However, its inhibitory mechanism is not yet clear. The current study evaluated the inhibitory activity of PCN against various phytopathogenic fungi and found that PCN has inhibitory activity against multiple pathogens, with a half-maximal effective concentration (EC<sub>50</sub>) value for <i>D. segeticola</i> of 16.11 μg/mL in vitro and a maximum in-vivo curative activity of 72.28% toward tea leaf spot. Morphological changes in the hyphae after exposure to PCN were observed through microstructure and ultrastructure analysis, and indicated that PCN causes abnormalities in the hyphae, such as cytoplasmic coagulation, shortened hyphal inter-septum distances, and unclear boundaries of organelles. Transcriptomic analysis revealed that PCN upregulated the expression of genes related with energy metabolism. PCN significantly reduced the ATP concentration in the hyphae and decreased mitochondrial membrane potential. Molecular docking analysis indicated that PCN binds to one of the candidate target proteins, pyruvate dehydrogenase, with lower free energy of -10.7 kcal/mol. This study indicated that PCN can interfere with energy metabolism, reducing ATP generation, ultimately affecting hyphal growth. Overall, PCN shows potential for future application in the control of tea leaf spot due to its excellent antifungal activity and unique mode of action.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-07-24-0209-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to a lack of understanding of the disease epidemiology and comprehensive control measures, tea leaf spot caused by Didymella segeticola has a significant negative impact on tea yield and quality in the tea plantations of Southwest China. Phenazine-1-carboxamide (PCN) is a phenazine compound derived from Pseudomonas species, which exhibits antimicrobial activity against various pathogens. However, its inhibitory mechanism is not yet clear. The current study evaluated the inhibitory activity of PCN against various phytopathogenic fungi and found that PCN has inhibitory activity against multiple pathogens, with a half-maximal effective concentration (EC50) value for D. segeticola of 16.11 μg/mL in vitro and a maximum in-vivo curative activity of 72.28% toward tea leaf spot. Morphological changes in the hyphae after exposure to PCN were observed through microstructure and ultrastructure analysis, and indicated that PCN causes abnormalities in the hyphae, such as cytoplasmic coagulation, shortened hyphal inter-septum distances, and unclear boundaries of organelles. Transcriptomic analysis revealed that PCN upregulated the expression of genes related with energy metabolism. PCN significantly reduced the ATP concentration in the hyphae and decreased mitochondrial membrane potential. Molecular docking analysis indicated that PCN binds to one of the candidate target proteins, pyruvate dehydrogenase, with lower free energy of -10.7 kcal/mol. This study indicated that PCN can interfere with energy metabolism, reducing ATP generation, ultimately affecting hyphal growth. Overall, PCN shows potential for future application in the control of tea leaf spot due to its excellent antifungal activity and unique mode of action.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
吩嗪-1-甲酰胺调节植物病原真菌的丙酮酸脱氢酶,以控制由Didymella segeticola引起的茶叶斑点病。
由于缺乏对茶叶叶斑病流行病学的了解和综合防治措施,茶叶叶斑病(Didymella segeticola)对中国西南地区茶园的茶叶产量和质量造成了严重的负面影响。吩嗪-1-甲酰胺(PCN)是从假单胞菌中提取的一种吩嗪类化合物,对多种病原体具有抗菌活性。然而,其抑制机制尚不清楚。本研究评估了 PCN 对多种植物病原真菌的抑制活性,发现 PCN 对多种病原菌都有抑制活性,对 D. segeticola 的体外半数最大有效浓度(EC50)值为 16.11 μg/mL,对茶叶斑点病的体内最大治疗活性为 72.28%。通过显微结构和超微结构分析,观察了接触 PCN 后菌丝的形态变化,结果表明 PCN 会导致菌丝异常,如细胞质凝固、隔膜间距缩短、细胞器界限不清等。转录组分析表明,多氯化萘可上调与能量代谢有关的基因的表达。PCN 明显降低了菌丝中的 ATP 浓度,并降低了线粒体膜电位。分子对接分析表明,多氯化萘与候选靶蛋白之一丙酮酸脱氢酶结合的自由能较低,为-10.7 kcal/mol。这项研究表明,多氯化萘可以干扰能量代谢,减少 ATP 的生成,最终影响蘑菇的生长。总之,多氯化萘具有优异的抗真菌活性和独特的作用模式,有望在未来应用于防治茶叶斑点病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Phytopathology
Phytopathology 生物-植物科学
CiteScore
5.90
自引率
9.40%
发文量
505
审稿时长
4-8 weeks
期刊介绍: Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.
期刊最新文献
Validation of PCR Diagnostic Assays for Detection and Identification of All Ralstonia solanacearum Sequevars Causing Moko Disease in Banana. Building Accelerated Plant Breeding Pipelines: Screening to Evaluate Lima Bean Resistance to Root-Knot Nematode in Diverse Inbred Lines and Segregating Breeding Populations. First Reported Sexual Recombination Between Pyrenophora teres Isolates from Barley and Barley Grass. Mapping Seedling and Adult Plant Leaf Rust Resistance Genes in the Durum Wheat Cultivar Strongfield and Other Triticum turgidum Lines. An Engineered Citrus Tristeza Virus (T36CA)-Based Vector Induces Gene-Specific RNA Silencing and Is Graft Transmissible to Commercial Citrus Varieties.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1