Applied Investigation of Methyl, Ethyl, Propyl, and Butyl Mercaptan as Potential Poisons in the Gas Phase Polymerization Reaction of Propylene.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-10 DOI:10.3390/polym16202851
Joaquin Hernandez-Fernandez, Juan Esteban Herrera Zabala, Edgar Marquez
{"title":"Applied Investigation of Methyl, Ethyl, Propyl, and Butyl Mercaptan as Potential Poisons in the Gas Phase Polymerization Reaction of Propylene.","authors":"Joaquin Hernandez-Fernandez, Juan Esteban Herrera Zabala, Edgar Marquez","doi":"10.3390/polym16202851","DOIUrl":null,"url":null,"abstract":"<p><p>The polypropylene (PP) synthesis process is crucial in the plastics industry, requiring precise control as it directly impacts the catalytic activity and the final product's performance. This study investigates the effects of trace amounts of four different mercaptans on the polymerization of propylene using a fourth-generation Ziegler-Natta (ZN) catalyst. Various concentrations of these mercaptans were tested, and results showed that their presence significantly reduced the melt flow index (MFI) of the final PP. The most notable MFI decrease occurred at 37.17 ppm of propyl mercaptan and 52.60 ppm of butyl mercaptan. Methyl and ethyl mercaptan also reduced the MFI at lower concentrations, indicating that mercaptans act as inhibitors by slowing down the polymerization process and reducing the fluidity of molten PP. The highest MFI increase was observed at lower concentrations of each mercaptan, suggesting that smaller molecular inhibitors require less concentration. This trend was also seen in the catalyst's productivity, where lower concentrations of methyl mercaptan reduced PP production more effectively than higher concentrations of butyl mercaptan. Fourier transform infrared spectroscopy (FTIR) identified interactions between the mercaptans and the ZN catalyst. Computational analysis further supported these findings, providing insights into the molecular interactions and suggesting possible inhibition mechanisms that could impact the final properties of polypropylene.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202851","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The polypropylene (PP) synthesis process is crucial in the plastics industry, requiring precise control as it directly impacts the catalytic activity and the final product's performance. This study investigates the effects of trace amounts of four different mercaptans on the polymerization of propylene using a fourth-generation Ziegler-Natta (ZN) catalyst. Various concentrations of these mercaptans were tested, and results showed that their presence significantly reduced the melt flow index (MFI) of the final PP. The most notable MFI decrease occurred at 37.17 ppm of propyl mercaptan and 52.60 ppm of butyl mercaptan. Methyl and ethyl mercaptan also reduced the MFI at lower concentrations, indicating that mercaptans act as inhibitors by slowing down the polymerization process and reducing the fluidity of molten PP. The highest MFI increase was observed at lower concentrations of each mercaptan, suggesting that smaller molecular inhibitors require less concentration. This trend was also seen in the catalyst's productivity, where lower concentrations of methyl mercaptan reduced PP production more effectively than higher concentrations of butyl mercaptan. Fourier transform infrared spectroscopy (FTIR) identified interactions between the mercaptans and the ZN catalyst. Computational analysis further supported these findings, providing insights into the molecular interactions and suggesting possible inhibition mechanisms that could impact the final properties of polypropylene.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
甲硫醇、乙硫醇、丙硫醇和丁硫醇作为丙烯气相聚合反应中潜在毒物的应用研究。
聚丙烯(PP)合成工艺在塑料工业中至关重要,需要精确控制,因为它直接影响催化活性和最终产品的性能。本研究调查了微量的四种不同硫醇对使用第四代齐格勒-纳塔(ZN)催化剂聚合丙烯的影响。对不同浓度的硫醇进行了测试,结果表明,这些硫醇的存在显著降低了最终聚丙烯的熔体流动指数(MFI)。在丙硫醇浓度为 37.17 ppm 和丁硫醇浓度为 52.60 ppm 时,MFI 下降最为明显。甲硫醇和乙硫醇在浓度较低时也会降低 MFI,这表明硫醇作为抑制剂会减缓聚合过程并降低熔融 PP 的流动性。在每种硫醇的浓度较低时,MFI 的增幅最大,这表明较小分子的抑制剂所需的浓度较低。这一趋势也体现在催化剂的生产率上,较低浓度的甲硫醇比较高浓度的丁硫醇更有效地降低了 PP 的产量。傅立叶变换红外光谱(FTIR)确定了硫醇与 ZN 催化剂之间的相互作用。计算分析进一步证实了这些发现,深入了解了分子间的相互作用,并提出了可能影响聚丙烯最终特性的抑制机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Effect of Multivitamins on the Color Stability of Dental Materials Used in Pediatric Dentistry: An In Vitro Study. Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices. Phenylethynyl-Terminated Imide Oligomer-Based Thermoset Resins. Physical, Mechanical, and Flammability Properties of Wood-Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1