Avocado Seed Starch-Based Films Reinforced with Starch Nanocrystals.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-10 DOI:10.3390/polym16202868
Pedro Francisco Muñoz-Gimena, Alejandro Aragón-Gutiérrez, Enrique Blázquez-Blázquez, Marina Patricia Arrieta, Gema Rodríguez, Laura Peponi, Daniel López
{"title":"Avocado Seed Starch-Based Films Reinforced with Starch Nanocrystals.","authors":"Pedro Francisco Muñoz-Gimena, Alejandro Aragón-Gutiérrez, Enrique Blázquez-Blázquez, Marina Patricia Arrieta, Gema Rodríguez, Laura Peponi, Daniel López","doi":"10.3390/polym16202868","DOIUrl":null,"url":null,"abstract":"<p><p>Biopolymers derived from biomass can provide the advantages of both biodegradability and functional qualities from a circular economy point of view, where waste is transformed into raw material. In particular, avocado seeds can be considered an interesting residue for biobased packaging applications due to their high starch content. In this work, avocado seed starch (ASS)-based films containing different glycerol concentrations were prepared by solvent casting. Films were also reinforced with starch nanocrystals (SNCs) obtained through the acid hydrolysis of ASS. The characterization of the extracted starch and starch nanocrystals by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis has been reported. Adding 1% of SNCs increased elastic modulus by 112% and decreased water vapor permeability by 30% with respect to neat matrix. Interestingly, the bioactive compounds from the avocado seed provided the films with high antioxidant capacity. Moreover, considering the long time required for traditional plastic packaging to degrade, all of the ASS-based films disintegrated within 48 h under lab-scale composting conditions. The results of this work support the valorization of food waste byproducts and the development of reinforced biodegradable materials for potential use as active food packaging.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511395/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202868","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Biopolymers derived from biomass can provide the advantages of both biodegradability and functional qualities from a circular economy point of view, where waste is transformed into raw material. In particular, avocado seeds can be considered an interesting residue for biobased packaging applications due to their high starch content. In this work, avocado seed starch (ASS)-based films containing different glycerol concentrations were prepared by solvent casting. Films were also reinforced with starch nanocrystals (SNCs) obtained through the acid hydrolysis of ASS. The characterization of the extracted starch and starch nanocrystals by scanning electron microscopy, X-ray diffraction, and thermogravimetric analysis has been reported. Adding 1% of SNCs increased elastic modulus by 112% and decreased water vapor permeability by 30% with respect to neat matrix. Interestingly, the bioactive compounds from the avocado seed provided the films with high antioxidant capacity. Moreover, considering the long time required for traditional plastic packaging to degrade, all of the ASS-based films disintegrated within 48 h under lab-scale composting conditions. The results of this work support the valorization of food waste byproducts and the development of reinforced biodegradable materials for potential use as active food packaging.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用淀粉纳米晶体增强的鳄梨籽淀粉基薄膜。
从循环经济的角度来看,从生物质中提取的生物聚合物具有生物可降解性和功能性的优点,可将废弃物转化为原材料。特别是鳄梨种子,由于其淀粉含量高,可被视为生物基包装应用的一种有趣的残留物。在这项工作中,通过溶剂浇铸法制备了含有不同甘油浓度的鳄梨籽淀粉(ASS)薄膜。薄膜中还添加了通过酸水解鳄梨籽淀粉获得的淀粉纳米晶体(SNC)。通过扫描电子显微镜、X 射线衍射和热重分析对提取的淀粉和淀粉纳米晶体进行了表征。与纯基质相比,添加 1%的 SNC 可使弹性模量提高 112%,水蒸气渗透性降低 30%。有趣的是,牛油果种子中的生物活性化合物为薄膜提供了很高的抗氧化能力。此外,考虑到传统塑料包装需要很长时间才能降解,在实验室规模的堆肥条件下,所有基于 ASS 的薄膜都在 48 小时内分解。这项工作的结果支持了食品废弃物副产品的价值化和可用作活性食品包装的增强型生物降解材料的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Effect of Multivitamins on the Color Stability of Dental Materials Used in Pediatric Dentistry: An In Vitro Study. Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices. Phenylethynyl-Terminated Imide Oligomer-Based Thermoset Resins. Physical, Mechanical, and Flammability Properties of Wood-Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1