Mechanical and Thermal Degradation-Related Performance of Recycled LDPE from Post-Consumer Waste.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE Polymers Pub Date : 2024-10-10 DOI:10.3390/polym16202863
Miroslav Müller, Viktor Kolář, Rajesh Kumar Mishra
{"title":"Mechanical and Thermal Degradation-Related Performance of Recycled LDPE from Post-Consumer Waste.","authors":"Miroslav Müller, Viktor Kolář, Rajesh Kumar Mishra","doi":"10.3390/polym16202863","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents research aimed at laboratory experiments on static and cyclic fatigue testing of low-density polyethylene (LDPE) recovered from post-consumer waste in order to develop a recycled product exhibiting satisfactory mechanical and thermo-mechanical properties. The results of the cyclic fatigue tests set up to 80% of the maximum load in static tensile testing demonstrated satisfactory functionality of the recycled material developed by using the injection molding process. There was no significant change in the tensile strength under static and cyclic fatigue tests. Under cyclic loading, there was a quasi-static effect manifested by plastic deformation, and the displacement increased significantly. The static and cyclic tensile tests indicated improvement in the mechanical performance of the recycled LDPE as compared to the virgin material, owing to the high quality of the regranulates. Fourier Transform Infrared Spectroscopy (FTIR) was conducted to analyze the functional groups in virgin and recycled LDPE samples. The analysis showed no significant change in the transmittance spectra. The thermal degradation performance was also analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The results were quite similar for both virgin and recycled LDPE.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202863","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents research aimed at laboratory experiments on static and cyclic fatigue testing of low-density polyethylene (LDPE) recovered from post-consumer waste in order to develop a recycled product exhibiting satisfactory mechanical and thermo-mechanical properties. The results of the cyclic fatigue tests set up to 80% of the maximum load in static tensile testing demonstrated satisfactory functionality of the recycled material developed by using the injection molding process. There was no significant change in the tensile strength under static and cyclic fatigue tests. Under cyclic loading, there was a quasi-static effect manifested by plastic deformation, and the displacement increased significantly. The static and cyclic tensile tests indicated improvement in the mechanical performance of the recycled LDPE as compared to the virgin material, owing to the high quality of the regranulates. Fourier Transform Infrared Spectroscopy (FTIR) was conducted to analyze the functional groups in virgin and recycled LDPE samples. The analysis showed no significant change in the transmittance spectra. The thermal degradation performance was also analyzed by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The results were quite similar for both virgin and recycled LDPE.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从消费后废料中回收的低密度聚乙烯的机械和热降解相关性能。
本文介绍了对从消费后废料中回收的低密度聚乙烯(LDPE)进行静态和循环疲劳测试的实验室实验研究,目的是开发一种具有令人满意的机械和热机械性能的再生产品。在静态拉伸试验中,循环疲劳试验的最大载荷设定为 80%,试验结果表明,采用注塑工艺开发的再生材料具有令人满意的功能。在静态和循环疲劳测试中,拉伸强度没有明显变化。在循环加载下,出现了塑性变形的准静态效应,位移明显增加。静态和循环拉伸测试表明,与原生材料相比,再生低密度聚乙烯的机械性能有所提高,这得益于再生料的高质量。傅立叶变换红外光谱(FTIR)分析了原生和回收低密度聚乙烯样品中的官能团。分析表明透射光谱没有明显变化。热降解性能也通过差示扫描量热法(DSC)和动态机械分析法(DMA)进行了分析。原始低密度聚乙烯和回收低密度聚乙烯的结果非常相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
期刊最新文献
Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension. Effect of Multivitamins on the Color Stability of Dental Materials Used in Pediatric Dentistry: An In Vitro Study. Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices. Phenylethynyl-Terminated Imide Oligomer-Based Thermoset Resins. Physical, Mechanical, and Flammability Properties of Wood-Plastic Composites (WPC) Containing Beech-Wood Flour and Flame-Retardant Additives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1