Chung-Yueh Lien, Rui-Jun Deng, Jong-Ling Fuh, Yun-Ni Ting, Albert C Yang
{"title":"Enhancing facial feature de-identification in multiframe brain images: A generative adversarial network approach.","authors":"Chung-Yueh Lien, Rui-Jun Deng, Jong-Ling Fuh, Yun-Ni Ting, Albert C Yang","doi":"10.1016/bs.pbr.2024.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>The collection of head images for public datasets in the field of brain science has grown remarkably in recent years, underscoring the need for robust de-identification methods to adhere with privacy regulations. This paper elucidates a novel deep learning-based approach to deidentifying facial features in brain images using a generative adversarial network to synthesize new facial features and contours. We employed the precision of the three-dimensional U-Net model to detect specific features such as the ears, nose, mouth, and eyes. Results: Our method diverges from prior studies by highlighting partial regions of the head image rather than comprehensive full-head images. We trained and tested our model on a dataset comprising 490 cases from a publicly available head computed tomography image dataset and an additional 70 cases with head MR images. Integrated data proved advantageous, with promising results. The nose, mouth, and eye detection achieved 100% accuracy, while ear detection reached 85.03% in the training dataset. In the testing dataset, ear detection accuracy was 65.98%, and the validation dataset ear detection attained 100%. Analysis of pixel value histograms demonstrated varying degrees of similarity, as measured by the Structural Similarity Index (SSIM), between raw and generated features across different facial features. The proposed methodology, tailored for partial head image processing, is well suited for real-world imaging examination scenarios and holds potential for future clinical applications contributing to the advancement of research in de-identification technologies, thus fortifying privacy safeguards.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"290 ","pages":"141-156"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2024.07.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
The collection of head images for public datasets in the field of brain science has grown remarkably in recent years, underscoring the need for robust de-identification methods to adhere with privacy regulations. This paper elucidates a novel deep learning-based approach to deidentifying facial features in brain images using a generative adversarial network to synthesize new facial features and contours. We employed the precision of the three-dimensional U-Net model to detect specific features such as the ears, nose, mouth, and eyes. Results: Our method diverges from prior studies by highlighting partial regions of the head image rather than comprehensive full-head images. We trained and tested our model on a dataset comprising 490 cases from a publicly available head computed tomography image dataset and an additional 70 cases with head MR images. Integrated data proved advantageous, with promising results. The nose, mouth, and eye detection achieved 100% accuracy, while ear detection reached 85.03% in the training dataset. In the testing dataset, ear detection accuracy was 65.98%, and the validation dataset ear detection attained 100%. Analysis of pixel value histograms demonstrated varying degrees of similarity, as measured by the Structural Similarity Index (SSIM), between raw and generated features across different facial features. The proposed methodology, tailored for partial head image processing, is well suited for real-world imaging examination scenarios and holds potential for future clinical applications contributing to the advancement of research in de-identification technologies, thus fortifying privacy safeguards.
期刊介绍:
Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.