Tingli Pan, Siqi Liu, Qichao Liao, Yu Li, Yang Xiao, Yu Sun, Lei Zhou, Yixing Li
{"title":"Dietary supplement of veratric acid alleviates liver steatosis and reduces abdominal fat deposition in broilers.","authors":"Tingli Pan, Siqi Liu, Qichao Liao, Yu Li, Yang Xiao, Yu Sun, Lei Zhou, Yixing Li","doi":"10.1016/j.psj.2024.104406","DOIUrl":null,"url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) and obesity are nutritional metabolic diseases that are prevalent in the poultry industry, and have a negative impact on its functioning. Veratric acid (VA) is a phenolic acid compound extracted from the Chinese herbal medicine Trollius chinensis Bunge, known for its anti-inflammatory and antioxidant properties. In this study, we used chicken hepatocytes (Leghorn male hepatoma cells) and treated with a mixture of oleic acid and palmitic acid as well as Yellow-feathered broilers fed a high-fat diet to examine the impact of VA on liver-lipid metabolism and deposition of abdominal fat. The results showed that VA (1μM) reduced the triglyceride and total cholesterol levels in the chicken hepatocytes (p < 0.05). In the broiler NAFLD model, VA significantly reduced liver TG levels (p < 0.05) without affecting growth performance. Dietary supplementation with 0.05% or 0.1% VA supplementation also significantly reduced the mRNA expression levels of key genes involved in the synthesis of fatty acids such as sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-CoA carboxylase in broiler livers. In addition, 0.1% VA reduced abdominal fat accumulation and improved blood biochemical indexes in broilers. Network pharmacology analysis suggested that VA may participate in regulating fat metabolism in broilers via the proliferator-activated receptor signaling pathway. Taken together, the study results support VA as a candidate feed additive to provide a novel strategy for preventing NAFLD and excessive fat deposition in chickens.</p>","PeriodicalId":20459,"journal":{"name":"Poultry Science","volume":"103 12","pages":"104406"},"PeriodicalIF":3.8000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poultry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.psj.2024.104406","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Nonalcoholic fatty liver disease (NAFLD) and obesity are nutritional metabolic diseases that are prevalent in the poultry industry, and have a negative impact on its functioning. Veratric acid (VA) is a phenolic acid compound extracted from the Chinese herbal medicine Trollius chinensis Bunge, known for its anti-inflammatory and antioxidant properties. In this study, we used chicken hepatocytes (Leghorn male hepatoma cells) and treated with a mixture of oleic acid and palmitic acid as well as Yellow-feathered broilers fed a high-fat diet to examine the impact of VA on liver-lipid metabolism and deposition of abdominal fat. The results showed that VA (1μM) reduced the triglyceride and total cholesterol levels in the chicken hepatocytes (p < 0.05). In the broiler NAFLD model, VA significantly reduced liver TG levels (p < 0.05) without affecting growth performance. Dietary supplementation with 0.05% or 0.1% VA supplementation also significantly reduced the mRNA expression levels of key genes involved in the synthesis of fatty acids such as sterol regulatory element-binding protein 1c, fatty acid synthase, and acetyl-CoA carboxylase in broiler livers. In addition, 0.1% VA reduced abdominal fat accumulation and improved blood biochemical indexes in broilers. Network pharmacology analysis suggested that VA may participate in regulating fat metabolism in broilers via the proliferator-activated receptor signaling pathway. Taken together, the study results support VA as a candidate feed additive to provide a novel strategy for preventing NAFLD and excessive fat deposition in chickens.
期刊介绍:
First self-published in 1921, Poultry Science is an internationally renowned monthly journal, known as the authoritative source for a broad range of poultry information and high-caliber research. The journal plays a pivotal role in the dissemination of preeminent poultry-related knowledge across all disciplines. As of January 2020, Poultry Science will become an Open Access journal with no subscription charges, meaning authors who publish here can make their research immediately, permanently, and freely accessible worldwide while retaining copyright to their work. Papers submitted for publication after October 1, 2019 will be published as Open Access papers.
An international journal, Poultry Science publishes original papers, research notes, symposium papers, and reviews of basic science as applied to poultry. This authoritative source of poultry information is consistently ranked by ISI Impact Factor as one of the top 10 agriculture, dairy and animal science journals to deliver high-caliber research. Currently it is the highest-ranked (by Impact Factor and Eigenfactor) journal dedicated to publishing poultry research. Subject areas include breeding, genetics, education, production, management, environment, health, behavior, welfare, immunology, molecular biology, metabolism, nutrition, physiology, reproduction, processing, and products.