{"title":"Enhancing Europium Adsorption Effect of Fe on Several Geological Materials by Applying XANES, EXAFS, and Wavelet Transform Techniques.","authors":"Chi-Wen Hsieh, Zih-Shiuan Chiou, Chuan-Pin Lee, Shih-Chin Tsai, Wei-Hsiang Tseng, Yu-Hung Wang, Yi-Ting Chen, Chein-Hsieng Kuo, Hui-Min Chiu","doi":"10.3390/toxics12100706","DOIUrl":null,"url":null,"abstract":"<p><p>This study conducted adsorption experiments using Europium (Eu(III)) on geological materials collected from Taiwan. Batch tests on argillite, basalt, granite, and biotite showed that argillite and basalt exhibited strong adsorption reactions with Eu. X-ray diffraction (XRD) analysis also clearly indicated differences before and after adsorption. By combining X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and wavelet transform (WT) analyses, we observed that the Fe<sub>2</sub>O<sub>3</sub> content significantly affects the Eu-Fe distance in the inner-sphere layer during the Eu adsorption process. The wavelet transform analysis for two-dimensional information helps differentiate two distances of Eu-O, which are difficult to analyze, with hydrated outer-sphere Eu-O distances ranging from 2.42 to 2.52 Å and inner-sphere Eu-O distances from 2.27 to 2.32 Å. The EXAFS results for Fe<sub>2</sub>O<sub>3</sub> and SiO<sub>2</sub> in argillite and basalt reveal different adsorption mechanisms. Fe<sub>2</sub>O<sub>3</sub> exhibits inner-sphere surface complexation in the order of basalt, argillite, and granite, <b>while</b> SiO<sub>2</sub> forms outer-sphere ion exchange with basalt and argillite. Wavelet transform analysis also highlights the differences among these materials.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100706","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducted adsorption experiments using Europium (Eu(III)) on geological materials collected from Taiwan. Batch tests on argillite, basalt, granite, and biotite showed that argillite and basalt exhibited strong adsorption reactions with Eu. X-ray diffraction (XRD) analysis also clearly indicated differences before and after adsorption. By combining X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and wavelet transform (WT) analyses, we observed that the Fe2O3 content significantly affects the Eu-Fe distance in the inner-sphere layer during the Eu adsorption process. The wavelet transform analysis for two-dimensional information helps differentiate two distances of Eu-O, which are difficult to analyze, with hydrated outer-sphere Eu-O distances ranging from 2.42 to 2.52 Å and inner-sphere Eu-O distances from 2.27 to 2.32 Å. The EXAFS results for Fe2O3 and SiO2 in argillite and basalt reveal different adsorption mechanisms. Fe2O3 exhibits inner-sphere surface complexation in the order of basalt, argillite, and granite, while SiO2 forms outer-sphere ion exchange with basalt and argillite. Wavelet transform analysis also highlights the differences among these materials.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
Toxics (ISSN 2305-6304) is an international, peer-reviewed, open access journal which provides an advanced forum for studies related to all aspects of toxic chemicals and materials. It publishes reviews, regular research papers, and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in detail. There is, therefore, no restriction on the maximum length of the papers, although authors should write their papers in a clear and concise way. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of calculations and experimental procedure can be deposited as supplementary material, if it is not possible to publish them along with the text.