Adrián Macías-de la Rosa, Lorenzo López-Rosales, Antonio Contreras-Gómez, Asterio Sánchez-Mirón, Francisco García-Camacho, María Del Carmen Cerón-García
{"title":"Salinity as an Abiotic Stressor for Eliciting Bioactive Compounds in Marine Microalgae.","authors":"Adrián Macías-de la Rosa, Lorenzo López-Rosales, Antonio Contreras-Gómez, Asterio Sánchez-Mirón, Francisco García-Camacho, María Del Carmen Cerón-García","doi":"10.3390/toxins16100425","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the impact of culture medium salinity (5-50 PSU) on the growth and maximum photochemical yield of photosystem II (<i>Fv</i>/<i>Fm</i>) and the composition of carotenoids, fatty acids, and bioactive substances in three marine microalgae (<i>Chrysochromulina rotalis</i>, <i>Amphidinium carterae</i>, and <i>Heterosigma akashiwo</i>). The microalgae were photoautotrophically cultured in discontinuous mode in a single stage (S1) and a two-stage culture with salt shock (S2). A growth model was developed to link biomass productivity with salinity for each species. <i>C. rotalis</i> achieved a maximum biomass productivity (<i>Pmax</i>) of 15.85 ± 0.32 mg·L<sup>-1</sup>·day<sup>-1</sup> in S1 and 16.12 ± 0.13 mg·L<sup>-1</sup>·day<sup>-1</sup> in S2. The salt shock in S2 notably enhanced carotenoid production, particularly in <i>C. rotalis</i> and <i>H. akashiwo</i>, where fucoxanthin was the main carotenoid, while peridinin dominated in <i>A. carterae</i>. <i>H. akashiwo</i> also exhibited increased fatty acid productivity in S2. Salinity changes affected the proportions of saturated, monounsaturated, and polyunsaturated fatty acids in all three species. Additionally, hyposaline conditions boosted the production of haemolytic substances in <i>A. carterae</i> and <i>C. rotalis.</i></p>","PeriodicalId":23119,"journal":{"name":"Toxins","volume":"16 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510898/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxins","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/toxins16100425","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the impact of culture medium salinity (5-50 PSU) on the growth and maximum photochemical yield of photosystem II (Fv/Fm) and the composition of carotenoids, fatty acids, and bioactive substances in three marine microalgae (Chrysochromulina rotalis, Amphidinium carterae, and Heterosigma akashiwo). The microalgae were photoautotrophically cultured in discontinuous mode in a single stage (S1) and a two-stage culture with salt shock (S2). A growth model was developed to link biomass productivity with salinity for each species. C. rotalis achieved a maximum biomass productivity (Pmax) of 15.85 ± 0.32 mg·L-1·day-1 in S1 and 16.12 ± 0.13 mg·L-1·day-1 in S2. The salt shock in S2 notably enhanced carotenoid production, particularly in C. rotalis and H. akashiwo, where fucoxanthin was the main carotenoid, while peridinin dominated in A. carterae. H. akashiwo also exhibited increased fatty acid productivity in S2. Salinity changes affected the proportions of saturated, monounsaturated, and polyunsaturated fatty acids in all three species. Additionally, hyposaline conditions boosted the production of haemolytic substances in A. carterae and C. rotalis.
期刊介绍:
Toxins (ISSN 2072-6651) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to toxins and toxinology. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.