Adverse Outcomes Following Exposure to Perfluorooctanesulfonamide (PFOSA) in Larval Zebrafish (Danio rerio): A Neurotoxic and Behavioral Perspective.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Toxics Pub Date : 2024-10-04 DOI:10.3390/toxics12100723
Nikita David, Emma Ivantsova, Isaac Konig, Cole D English, Lev Avidan, Mark Kreychman, Mario L Rivera, Camilo Escobar, Eliana Maira Agostini Valle, Amany Sultan, Christopher J Martyniuk
{"title":"Adverse Outcomes Following Exposure to Perfluorooctanesulfonamide (PFOSA) in Larval Zebrafish (<i>Danio rerio</i>): A Neurotoxic and Behavioral Perspective.","authors":"Nikita David, Emma Ivantsova, Isaac Konig, Cole D English, Lev Avidan, Mark Kreychman, Mario L Rivera, Camilo Escobar, Eliana Maira Agostini Valle, Amany Sultan, Christopher J Martyniuk","doi":"10.3390/toxics12100723","DOIUrl":null,"url":null,"abstract":"<p><p>Toxicity mechanisms of per- and polyfluoroalkyl substances (PFASs), a chemical class present in diverse ecosystems, as well as many of their precursors, have been increasingly characterized in aquatic species. Perfluorooctanesulfonamide (PFOSA, C<sub>8</sub>H<sub>2</sub>F<sub>17</sub>NO<sub>2</sub>S) is a common precursor of perfluorooctane sulfonic acid (PFOS), a long-chain PFAS. Here, we assessed sub-lethal endpoints related to development, oxidative stress, transcript levels, and distance moved in zebrafish embryos and larvae following continuous exposure to PFOSA beginning at 6 h post-fertilization (hpf). PFOSA decreased survival in fish treated with 1 µg/L PFOSA; however, the effect was modest relative to the controls (difference of 10%). Exposure up to 10 µg/L PFOSA did not affect hatch rate, nor did it induce ROS in 7-day-old larvae fish. The activity of larval fish treated with 100 µg/L PFOSA was reduced relative to the solvent control. Transcripts related to oxidative stress response and apoptosis were measured and BCL2-associated X, apoptosis regulator (<i>bax</i>)<i>,</i> cytochrome c, somatic (<i>cycs</i>)<i>,</i> catalase (<i>cat</i>), superoxide dismutase 2 (<i>sod2</i>) were induced with high concentrations of PFOSA. Genes related to neurotoxicity were also measured and transcript levels of acetylcholinesterase (<i>ache</i>), elav-like RNA binding protein 3 (<i>elavl3</i>), growth-associated protein 43 (<i>gap43</i>), synapsin II (<i>syn2a</i>), and tubulin <i>3 (tubb3)</i> were all increased in larval fish with higher PFOSA exposure. These data improve our understanding of the potential sub-lethal toxicity of PFOSA in fish species.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510739/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100723","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Toxicity mechanisms of per- and polyfluoroalkyl substances (PFASs), a chemical class present in diverse ecosystems, as well as many of their precursors, have been increasingly characterized in aquatic species. Perfluorooctanesulfonamide (PFOSA, C8H2F17NO2S) is a common precursor of perfluorooctane sulfonic acid (PFOS), a long-chain PFAS. Here, we assessed sub-lethal endpoints related to development, oxidative stress, transcript levels, and distance moved in zebrafish embryos and larvae following continuous exposure to PFOSA beginning at 6 h post-fertilization (hpf). PFOSA decreased survival in fish treated with 1 µg/L PFOSA; however, the effect was modest relative to the controls (difference of 10%). Exposure up to 10 µg/L PFOSA did not affect hatch rate, nor did it induce ROS in 7-day-old larvae fish. The activity of larval fish treated with 100 µg/L PFOSA was reduced relative to the solvent control. Transcripts related to oxidative stress response and apoptosis were measured and BCL2-associated X, apoptosis regulator (bax), cytochrome c, somatic (cycs), catalase (cat), superoxide dismutase 2 (sod2) were induced with high concentrations of PFOSA. Genes related to neurotoxicity were also measured and transcript levels of acetylcholinesterase (ache), elav-like RNA binding protein 3 (elavl3), growth-associated protein 43 (gap43), synapsin II (syn2a), and tubulin 3 (tubb3) were all increased in larval fish with higher PFOSA exposure. These data improve our understanding of the potential sub-lethal toxicity of PFOSA in fish species.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
幼年斑马鱼(Danio rerio)暴露于全氟辛烷磺酰胺(PFOSA)后的不良后果:从神经毒性和行为角度看全氟辛烷磺酰胺。
全氟烷基和多氟烷基物质(PFASs)是存在于各种生态系统中的一类化学物质,其毒性机制以及许多前体物质在水生物种中的特性已日益得到证实。全氟辛烷磺酰胺(PFOSA,C8H2F17NO2S)是一种长链全氟辛烷磺酸(PFOS)的常见前体。在此,我们评估了斑马鱼胚胎和幼体在受精后 6 小时开始连续接触 PFOSA 后与发育、氧化应激、转录物水平和移动距离有关的亚致死终点。经 1 µg/L PFOSA 处理的斑马鱼存活率降低,但与对照组相比影响不大(差异为 10%)。接触 10 µg/L PFOSA 不会影响孵化率,也不会诱发 7 天大幼鱼体内的 ROS。与溶剂对照组相比,经 100 µg/L PFOSA 处理的幼鱼的活性有所降低。测量了与氧化应激反应和细胞凋亡有关的转录本,高浓度 PFOSA 诱导了 BCL2 相关 X、细胞凋亡调节因子(bax)、细胞色素 c、体细胞(cycs)、过氧化氢酶(cat)、超氧化物歧化酶 2(sod2)。此外,还测定了与神经毒性相关的基因,结果表明,暴露于高浓度 PFOSA 的幼鱼体内乙酰胆碱酯酶 (ache)、elav 样 RNA 结合蛋白 3 (elavl3)、生长相关蛋白 43 (gap43)、突触素 II (syn2a) 和微管蛋白 3 (tubb3) 的转录水平均有所上升。这些数据提高了我们对全氟辛烷磺酸在鱼类中潜在亚致死毒性的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering: The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil); Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products; Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans; Approaches to assess the risks of chemicals and materials to humans and the environment; Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.
期刊最新文献
Relationship Between Perfluoroalkyl Acids in Human Serum and Sjogren's Syndrome: A Case-Control Study of Populations in Hangzhou, China. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. The Physiological Response of Salix matsudana for Water Pollution by 2,4-Dinitrophenol. Effects of Ciprofloxacin on the Production and Composition of Cellular Microcystins in Microcystis aeruginosa. Effect of Electrode Positioning on Electrokinetic Remediation of Contaminated Soft Clay with Surface Electrolyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1