Dopaminergic- and Serotonergic-Dependent Behaviors Are Altered by Lanthanide Series Metals in Caenorhabditis elegans.

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Toxics Pub Date : 2024-10-17 DOI:10.3390/toxics12100754
Anthony Radzimirski, Michael Croft, Nicholas Ireland, Lydia Miller, Jennifer Newell-Caito, Samuel Caito
{"title":"Dopaminergic- and Serotonergic-Dependent Behaviors Are Altered by Lanthanide Series Metals in <i>Caenorhabditis elegans</i>.","authors":"Anthony Radzimirski, Michael Croft, Nicholas Ireland, Lydia Miller, Jennifer Newell-Caito, Samuel Caito","doi":"10.3390/toxics12100754","DOIUrl":null,"url":null,"abstract":"<p><p>The lanthanide series elements are transition metals used as critical components of electronics, as well as rechargeable batteries, fertilizers, antimicrobials, contrast agents for medical imaging, and diesel fuel additives. With the surge in their utilization, lanthanide metals are being found more in our environment. However, little is known about the health effects associated with lanthanide exposure. Epidemiological studies as well as studies performed in rodents exposed to lanthanum (La) suggest neurological damage, learning and memory impairment, and disruption of neurotransmitter signaling, particularly in serotonin and dopamine pathways. Unfortunately, little is known about the neurological effects of heavier lanthanides. As dysfunctions of serotonergic and dopaminergic signaling are implicated in multiple neurological conditions, including Parkinson's disease, depression, generalized anxiety disorder, and post-traumatic stress disorder, it is of utmost importance to determine the effects of La and other lanthanides on these neurotransmitter systems. We therefore hypothesized that early-life exposure of light [La (III) or cerium (Ce (III))] or heavy [erbium (Er (III)) or ytterbium (Yb (III))] lanthanides in <i>Caenorhabditis elegans</i> could cause dysregulation of serotonergic and dopaminergic signaling upon adulthood. Serotonergic signaling was assessed by measuring pharyngeal pump rate, crawl-to-swim transition, as well as egg-laying behaviors. Dopaminergic signaling was assessed by measuring locomotor rate and egg-laying and swim-to-crawl transition behaviors. Treatment with La (III), Ce (III), Er (III), or Yb (III) caused deficits in serotonergic or dopaminergic signaling in all assays, suggesting both the heavy and light lanthanides disrupt these neurotransmitter systems. Concomitant with dysregulation of neurotransmission, all four lanthanides increased reactive oxygen species (ROS) generation and decreased glutathione and ATP levels. This suggests increased oxidative stress, which is a known modifier of neurotransmission. Altogether, our data suggest that both heavy and light lanthanide series elements disrupt serotonergic and dopaminergic signaling and may affect the development or pharmacological management of related neurological conditions.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511074/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100754","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The lanthanide series elements are transition metals used as critical components of electronics, as well as rechargeable batteries, fertilizers, antimicrobials, contrast agents for medical imaging, and diesel fuel additives. With the surge in their utilization, lanthanide metals are being found more in our environment. However, little is known about the health effects associated with lanthanide exposure. Epidemiological studies as well as studies performed in rodents exposed to lanthanum (La) suggest neurological damage, learning and memory impairment, and disruption of neurotransmitter signaling, particularly in serotonin and dopamine pathways. Unfortunately, little is known about the neurological effects of heavier lanthanides. As dysfunctions of serotonergic and dopaminergic signaling are implicated in multiple neurological conditions, including Parkinson's disease, depression, generalized anxiety disorder, and post-traumatic stress disorder, it is of utmost importance to determine the effects of La and other lanthanides on these neurotransmitter systems. We therefore hypothesized that early-life exposure of light [La (III) or cerium (Ce (III))] or heavy [erbium (Er (III)) or ytterbium (Yb (III))] lanthanides in Caenorhabditis elegans could cause dysregulation of serotonergic and dopaminergic signaling upon adulthood. Serotonergic signaling was assessed by measuring pharyngeal pump rate, crawl-to-swim transition, as well as egg-laying behaviors. Dopaminergic signaling was assessed by measuring locomotor rate and egg-laying and swim-to-crawl transition behaviors. Treatment with La (III), Ce (III), Er (III), or Yb (III) caused deficits in serotonergic or dopaminergic signaling in all assays, suggesting both the heavy and light lanthanides disrupt these neurotransmitter systems. Concomitant with dysregulation of neurotransmission, all four lanthanides increased reactive oxygen species (ROS) generation and decreased glutathione and ATP levels. This suggests increased oxidative stress, which is a known modifier of neurotransmission. Altogether, our data suggest that both heavy and light lanthanide series elements disrupt serotonergic and dopaminergic signaling and may affect the development or pharmacological management of related neurological conditions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
镧系元素改变了草履虫的多巴胺能和血清素能依赖行为
镧系元素是过渡金属,可用作电子产品的关键成分,也可用作充电电池、肥料、抗菌剂、医学成像造影剂和柴油添加剂。随着镧系金属的使用量激增,在我们的环境中发现的镧系金属也越来越多。然而,人们对接触镧系元素对健康的影响知之甚少。流行病学研究以及对暴露于镧(La)的啮齿类动物进行的研究表明,镧(La)会对神经系统造成损害、影响学习和记忆,并破坏神经递质信号转导,尤其是在血清素和多巴胺通路中。遗憾的是,人们对较重的镧系元素对神经系统的影响知之甚少。由于血清素能和多巴胺能信号传导功能障碍与多种神经系统疾病有关,包括帕金森病、抑郁症、广泛性焦虑症和创伤后应激障碍,因此确定 La 和其他镧系元素对这些神经递质系统的影响至关重要。因此,我们假设,草履虫早期暴露于轻[La (III)或铈(Ce (III)]]或重[铒(Er (III))或镱(Yb (III)]]镧系元素可能会导致其成年后血清素能和多巴胺能信号传导失调。通过测量咽泵速率、爬行到游泳的转变以及产卵行为来评估血清素能信号传导。多巴胺能信号通过测量运动速率、产卵和游泳到爬行的过渡行为进行评估。在所有试验中,用 La (III)、Ce (III)、Er (III) 或 Yb (III) 处理都会导致血清素能或多巴胺能信号的缺失,这表明重镧系元素和轻镧系元素都会破坏这些神经递质系统。在神经传递失调的同时,所有四种镧系元素都增加了活性氧(ROS)的生成,降低了谷胱甘肽和 ATP 的水平。这表明氧化应激增加,而氧化应激是已知的神经传递调节因子。总之,我们的数据表明,重镧系元素和轻镧系元素都会破坏5-羟色胺能和多巴胺能信号传导,并可能影响相关神经系统疾病的发展或药物治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Toxics
Toxics Chemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍: The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering: The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil); Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products; Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans; Approaches to assess the risks of chemicals and materials to humans and the environment; Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.
期刊最新文献
Relationship Between Perfluoroalkyl Acids in Human Serum and Sjogren's Syndrome: A Case-Control Study of Populations in Hangzhou, China. Micro(nano)plastic and Related Chemicals: Emerging Contaminants in Environment, Food and Health Impacts. The Physiological Response of Salix matsudana for Water Pollution by 2,4-Dinitrophenol. Effects of Ciprofloxacin on the Production and Composition of Cellular Microcystins in Microcystis aeruginosa. Effect of Electrode Positioning on Electrokinetic Remediation of Contaminated Soft Clay with Surface Electrolyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1