Marcia Gracindo Silva, Camila Guerra Martinez, Joao Paulo Cavalcanti de Albuquerque, André Luiz Gouvêa, Monica Maria Freire, Leidiane Caroline Lauthartte, Julio Mignaco, Wanderley Rodrigues Bastos, Elisabete Cesar de Mattos, Antonio Galina, Eleonora Kurtenbach
{"title":"Mitochondrial Dysfunction Plays a Relevant Role in Heart Toxicity Caused by MeHg.","authors":"Marcia Gracindo Silva, Camila Guerra Martinez, Joao Paulo Cavalcanti de Albuquerque, André Luiz Gouvêa, Monica Maria Freire, Leidiane Caroline Lauthartte, Julio Mignaco, Wanderley Rodrigues Bastos, Elisabete Cesar de Mattos, Antonio Galina, Eleonora Kurtenbach","doi":"10.3390/toxics12100712","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of methylmercury (MeHg) on exposed populations are a public health problem. In contrast to widely studied neurological damage, few cardiovascular changes have been described. Our group evaluated the cardiotoxicity of a cumulative dose of 70 mg.kg<sup>-1</sup> fractioned over a 14-day exposure period in mice (MeHg70 group). The effects of MeHg on proteins relevant to cardiac mitochondrial function were also investigated. The results obtained showed a reduction in oxygen consumption in the two settings. In cardiac tissue samples in oxygraphy studies, this reduction was related to a lower efficiency of complexes II and V, which belong to the oxidative phosphorylation system. In vivo, mice in the MeHg70 group presented lower oxygen consumption and running tolerance, as shown by ergometric analyses. Cardiac stress was evident in the MeHg70 group, as indicated by a marked increase in the level of the mRNA encoding atrial natriuretic peptide. Electrocardiogram studies revealed a lower heart rate at rest in the animals from the MeHg70 group, as well as prolonged left ventricular depolarisation and repolarisation. Through echocardiographic analysis, reductions in the left ventricular ejection fraction and left ventricular wall thickness of approximately 10% and 20%, respectively, were detected. These results indicate that the oral intake of MeHg can decrease cardiac function and oxidative metabolism. This finding highlights the importance of monitoring MeHg levels in humans and animals in contaminated areas, as well as periodically carrying out cardiac function tests.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":"12 10","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511492/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100712","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of methylmercury (MeHg) on exposed populations are a public health problem. In contrast to widely studied neurological damage, few cardiovascular changes have been described. Our group evaluated the cardiotoxicity of a cumulative dose of 70 mg.kg-1 fractioned over a 14-day exposure period in mice (MeHg70 group). The effects of MeHg on proteins relevant to cardiac mitochondrial function were also investigated. The results obtained showed a reduction in oxygen consumption in the two settings. In cardiac tissue samples in oxygraphy studies, this reduction was related to a lower efficiency of complexes II and V, which belong to the oxidative phosphorylation system. In vivo, mice in the MeHg70 group presented lower oxygen consumption and running tolerance, as shown by ergometric analyses. Cardiac stress was evident in the MeHg70 group, as indicated by a marked increase in the level of the mRNA encoding atrial natriuretic peptide. Electrocardiogram studies revealed a lower heart rate at rest in the animals from the MeHg70 group, as well as prolonged left ventricular depolarisation and repolarisation. Through echocardiographic analysis, reductions in the left ventricular ejection fraction and left ventricular wall thickness of approximately 10% and 20%, respectively, were detected. These results indicate that the oral intake of MeHg can decrease cardiac function and oxidative metabolism. This finding highlights the importance of monitoring MeHg levels in humans and animals in contaminated areas, as well as periodically carrying out cardiac function tests.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.