Yongshi Liu, Xi Lv, Heling Yuan, Xiaoming Wang, Jinhu Huang, Liping Wang
{"title":"Selenomethionine and Allicin Synergistically Mitigate Intestinal Oxidative Injury by Activating the Nrf2 Pathway.","authors":"Yongshi Liu, Xi Lv, Heling Yuan, Xiaoming Wang, Jinhu Huang, Liping Wang","doi":"10.3390/toxics12100719","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress frequently contributes to intestinal barrier injury in animals and humans. It was reported that both Selenomethionine (SeMet) and allicin exhibit protective effects against a range of diseases caused by oxidative stress. This study aimed to investigate the synergistic antioxidant effects and underlying mechanisms of SeMet and allicin on a H<sub>2</sub>O<sub>2</sub>-induced intestinal barrier injury model using IPEC-J2 cells and mice. The results showed that H<sub>2</sub>O<sub>2</sub> induced severe oxidative stress, including a decrease in cell viability, antioxidant level, migration capacity, and cell integrity. SeMet and allicin exhibited significant synergistic anti-oxidative effects on intestinal epithelial cells. The combined use of SeMet and allicin increased SOD activity, GSH content, and GSH/GSSG ratio while decreasing MDA, NO, and ROS content levels. Furthermore, we found that SeMet and allicin synergistically activated the nuclear factor erythroid-related factor 2 (Nrf2)-NAD(P)H dehydrogenase [quinone] 1 (NQO1) signaling pathway and down-regulated endoplasmic reticulum stress (ER stress)-related proteins. However, the synergistic antioxidative and intestinal barrier protective effects of SeMet and allicin were abolished by Nrf2 inhibitor ML385 in vitro and in vivo. In conclusion, SeMet and allicin synergistically attenuate intestinal barrier injury induced by excessively oxidative stress through the activation of the Nrf2 signaling pathway and inhibition ER stress. These findings support that the combined use of SeMet and allicin could enhance antioxidative properties and alleviate intestinal injury in further clinical practice.</p>","PeriodicalId":23195,"journal":{"name":"Toxics","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510923/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/toxics12100719","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Oxidative stress frequently contributes to intestinal barrier injury in animals and humans. It was reported that both Selenomethionine (SeMet) and allicin exhibit protective effects against a range of diseases caused by oxidative stress. This study aimed to investigate the synergistic antioxidant effects and underlying mechanisms of SeMet and allicin on a H2O2-induced intestinal barrier injury model using IPEC-J2 cells and mice. The results showed that H2O2 induced severe oxidative stress, including a decrease in cell viability, antioxidant level, migration capacity, and cell integrity. SeMet and allicin exhibited significant synergistic anti-oxidative effects on intestinal epithelial cells. The combined use of SeMet and allicin increased SOD activity, GSH content, and GSH/GSSG ratio while decreasing MDA, NO, and ROS content levels. Furthermore, we found that SeMet and allicin synergistically activated the nuclear factor erythroid-related factor 2 (Nrf2)-NAD(P)H dehydrogenase [quinone] 1 (NQO1) signaling pathway and down-regulated endoplasmic reticulum stress (ER stress)-related proteins. However, the synergistic antioxidative and intestinal barrier protective effects of SeMet and allicin were abolished by Nrf2 inhibitor ML385 in vitro and in vivo. In conclusion, SeMet and allicin synergistically attenuate intestinal barrier injury induced by excessively oxidative stress through the activation of the Nrf2 signaling pathway and inhibition ER stress. These findings support that the combined use of SeMet and allicin could enhance antioxidative properties and alleviate intestinal injury in further clinical practice.
ToxicsChemical Engineering-Chemical Health and Safety
CiteScore
4.50
自引率
10.90%
发文量
681
审稿时长
6 weeks
期刊介绍:
The Journal accepts papers describing work that furthers our understanding of the exposure, effects, and risks of chemicals and materials in humans and the natural environment as well as approaches to assess and/or manage the toxicological and ecotoxicological risks of chemicals and materials. The journal covers a wide range of toxic substances, including metals, pesticides, pharmaceuticals, biocides, nanomaterials, and polymers such as micro- and mesoplastics. Toxics accepts papers covering:
The occurrence, transport, and fate of chemicals and materials in different systems (e.g., food, air, water, soil);
Exposure of humans and the environment to toxic chemicals and materials as well as modelling and experimental approaches for characterizing the exposure in, e.g., water, air, soil, food, and consumer products;
Uptake, metabolism, and effects of chemicals and materials in a wide range of systems including in-vitro toxicological assays, aquatic and terrestrial organisms and ecosystems, model mammalian systems, and humans;
Approaches to assess the risks of chemicals and materials to humans and the environment;
Methodologies to eliminate or reduce the exposure of humans and the environment to toxic chemicals and materials.