Marissa Y Annis, Claire M Ravenburg, Klaas J van Wijk
{"title":"Uvr motifs regulate the chloroplast Clp chaperone-protease system.","authors":"Marissa Y Annis, Claire M Ravenburg, Klaas J van Wijk","doi":"10.1016/j.tplants.2024.09.015","DOIUrl":null,"url":null,"abstract":"<p><p>Chloroplast proteostasis relies on diverse proteases, including the essential Clp chaperone-protease system. Two chloroplast ClpC AAA+ chaperones and the plant-specific adaptor ClpF contain an Uvr motif with predicted coiled-coiled structures implicated in protein-protein interactions. Head-to-head contacts between Uvr motifs in middle (M)-domains regulate the oligomerization and activation of several bacterial Clp chaperones. Interestingly, in arabidopsis (Arabidopsis thaliana), this Uvr motif is found in six additional chloroplast proteins (Executer1, Executer2, and Uvr1-4). Here, we first summarize evidence that Uvr motifs regulate proteostasis in bacteria. Based on this evidence and recent results in arabidopsis, we postulate that arabidopsis Uvr motif proteins regulate chloroplast Clp proteolysis. We propose specific working hypotheses to test the function of the Uvr motif in chloroplast proteostasis.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tplants.2024.09.015","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chloroplast proteostasis relies on diverse proteases, including the essential Clp chaperone-protease system. Two chloroplast ClpC AAA+ chaperones and the plant-specific adaptor ClpF contain an Uvr motif with predicted coiled-coiled structures implicated in protein-protein interactions. Head-to-head contacts between Uvr motifs in middle (M)-domains regulate the oligomerization and activation of several bacterial Clp chaperones. Interestingly, in arabidopsis (Arabidopsis thaliana), this Uvr motif is found in six additional chloroplast proteins (Executer1, Executer2, and Uvr1-4). Here, we first summarize evidence that Uvr motifs regulate proteostasis in bacteria. Based on this evidence and recent results in arabidopsis, we postulate that arabidopsis Uvr motif proteins regulate chloroplast Clp proteolysis. We propose specific working hypotheses to test the function of the Uvr motif in chloroplast proteostasis.
期刊介绍:
Trends in Plant Science is the primary monthly review journal in plant science, encompassing a wide range from molecular biology to ecology. It offers concise and accessible reviews and opinions on fundamental plant science topics, providing quick insights into current thinking and developments in plant biology. Geared towards researchers, students, and teachers, the articles are authoritative, authored by both established leaders in the field and emerging talents.