首页 > 最新文献

Trends in Plant Science最新文献

英文 中文
Evolution of plant specialized metabolites: beyond ecological drivers.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-19 DOI: 10.1016/j.tplants.2025.02.010
Shuqing Xu, Emmanuel Gaquerel

Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.

植物会产生多种多样的特殊代谢物。传统上,人们主要通过植物与食草动物、病原体和传粉昆虫的生态互动来研究这些代谢物的进化,因为其中许多代谢物具有防御和/或吸引功能。然而,越来越多的证据表明,许多特化代谢物及其前体也是调节细胞生长和分化的细胞信号。我们认为,这些内在功能至少同样是影响植物化学防御进化的重要因素。我们进一步讨论了结合现代单细胞技术和进化基因组学的未来研究将如何为特化代谢多样化的进化过程提供新的见解。
{"title":"Evolution of plant specialized metabolites: beyond ecological drivers.","authors":"Shuqing Xu, Emmanuel Gaquerel","doi":"10.1016/j.tplants.2025.02.010","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.010","url":null,"abstract":"<p><p>Plants produce a highly diverse array of specialized metabolites. Traditionally, the evolution of these metabolites has been studied primarily through the lens of plants' ecological interactions with herbivores, pathogens, and pollinators, as many of them exhibit defense and/or attraction functions. However, increasing evidence suggests that many specialized metabolites, along with their precursors, also act as cellular signals that regulate cell growth and differentiation. We propose that these intrinsic functions are at least equally important factors in shaping the evolution of plant chemical defenses. We further discuss how future research that combines modern single-cell techniques and evolutionary genomics will provide novel insights into the evolutionary process of specialized metabolism diversification.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pangenome charts the genomic path for wheat improvement.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-19 DOI: 10.1016/j.tplants.2025.03.002
Mahendar Thudi, Martin Mascher, Murukarthick Jayakodi

A wheat pangenome of 17 Chinese cultivars, recently developed by Jiao et al., reveals structural variants (SVs) shaped by cultural, dietary, and environmental changes. This resource provides access to East Asian wheat genetic diversity and supports genome-driven efforts to advance wheat improvement and adaptation to changing agricultural demands.

{"title":"Pangenome charts the genomic path for wheat improvement.","authors":"Mahendar Thudi, Martin Mascher, Murukarthick Jayakodi","doi":"10.1016/j.tplants.2025.03.002","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.03.002","url":null,"abstract":"<p><p>A wheat pangenome of 17 Chinese cultivars, recently developed by Jiao et al., reveals structural variants (SVs) shaped by cultural, dietary, and environmental changes. This resource provides access to East Asian wheat genetic diversity and supports genome-driven efforts to advance wheat improvement and adaptation to changing agricultural demands.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143671028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Necessity for modeling hormonal crosstalk in arabidopsis root development?
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-12 DOI: 10.1016/j.tplants.2025.02.009
Simon Moore, Junli Liu, Chunli Chen, Keith Lindsey

Hormones play vital roles in plant root development. Mathematical models have been employed to study hormone functions. However, models developed by different research groups focus on different aspects of hormones and therefore cannot be used to study root growth as an integrative system that involves the functions of all hormones. To use modeling to study root development, the crosstalk nature of hormones requires the further development of mathematical models to understand their interplay in the context of diverse experimental data. This opinion article discusses what new insights can be developed by modeling hormonal crosstalk beyond experimental data. We propose that one integrative model should be developed to integrate all experimental data for elucidating root growth.

{"title":"Necessity for modeling hormonal crosstalk in arabidopsis root development?","authors":"Simon Moore, Junli Liu, Chunli Chen, Keith Lindsey","doi":"10.1016/j.tplants.2025.02.009","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.009","url":null,"abstract":"<p><p>Hormones play vital roles in plant root development. Mathematical models have been employed to study hormone functions. However, models developed by different research groups focus on different aspects of hormones and therefore cannot be used to study root growth as an integrative system that involves the functions of all hormones. To use modeling to study root development, the crosstalk nature of hormones requires the further development of mathematical models to understand their interplay in the context of diverse experimental data. This opinion article discusses what new insights can be developed by modeling hormonal crosstalk beyond experimental data. We propose that one integrative model should be developed to integrate all experimental data for elucidating root growth.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hidden aging: the secret role of root senescence.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-11 DOI: 10.1016/j.tplants.2025.02.004
Cevza Esin Tunc, Nicolaus von Wirén

Root age-dependent processes have remained poorly understood. Here, we define root age-related terms in their eco-/physiological context, provide a synthesis of read-outs and traits characterizing root senescence in different root types, and follow their modulation in the light of metabolic, hormonal, and genetic control. Evidence for an endogenously regulated senescence program in roots includes changes in root anatomy, metabolism, and color, decrease in root activity, increasing levels of stress-related hormones, and increasing expression of certain transcription factors (TFs) or genes involved in oxidative stress defense. Uncovering the genetic regulation of the developmental program steering root senescence is of great importance to establish a balanced view on whole-plant aging and improve resource efficiency in crops.

{"title":"Hidden aging: the secret role of root senescence.","authors":"Cevza Esin Tunc, Nicolaus von Wirén","doi":"10.1016/j.tplants.2025.02.004","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.004","url":null,"abstract":"<p><p>Root age-dependent processes have remained poorly understood. Here, we define root age-related terms in their eco-/physiological context, provide a synthesis of read-outs and traits characterizing root senescence in different root types, and follow their modulation in the light of metabolic, hormonal, and genetic control. Evidence for an endogenously regulated senescence program in roots includes changes in root anatomy, metabolism, and color, decrease in root activity, increasing levels of stress-related hormones, and increasing expression of certain transcription factors (TFs) or genes involved in oxidative stress defense. Uncovering the genetic regulation of the developmental program steering root senescence is of great importance to establish a balanced view on whole-plant aging and improve resource efficiency in crops.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating nitrogen sustainability with microbiome-associated phenotypes.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-11 DOI: 10.1016/j.tplants.2025.02.003
Sierra S Raglin, Angela D Kent

Crop microbiomes promote plant health through various mechanisms, including nutrient provisioning. However, agriculture neglected the importance of these microbiome-associated phenotypes (MAPs) in conventional management approaches originating from the Green Revolution. Green Revolution innovations, such as nitrogen fertilizers and high-yielding germplasm, supported an increase in global crop yields. Yet these advances also led to many environmental issues, including disruptions in microbially mediated nitrogen transformations that have reduced reliance on microbiomes for sustainable nitrogen acquisition. Overcoming the challenges introduced by the Green Revolution requires a shift toward ecologically informed agronomic strategies that incorporate MAPs into breeding and management decisions. Agriculture in the Anthropocene needs to mindfully manage crop microbiomes to decouple agrochemical inputs from profitable yields, minimizing the environmental repercussions of modern agriculture.

{"title":"Navigating nitrogen sustainability with microbiome-associated phenotypes.","authors":"Sierra S Raglin, Angela D Kent","doi":"10.1016/j.tplants.2025.02.003","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.003","url":null,"abstract":"<p><p>Crop microbiomes promote plant health through various mechanisms, including nutrient provisioning. However, agriculture neglected the importance of these microbiome-associated phenotypes (MAPs) in conventional management approaches originating from the Green Revolution. Green Revolution innovations, such as nitrogen fertilizers and high-yielding germplasm, supported an increase in global crop yields. Yet these advances also led to many environmental issues, including disruptions in microbially mediated nitrogen transformations that have reduced reliance on microbiomes for sustainable nitrogen acquisition. Overcoming the challenges introduced by the Green Revolution requires a shift toward ecologically informed agronomic strategies that incorporate MAPs into breeding and management decisions. Agriculture in the Anthropocene needs to mindfully manage crop microbiomes to decouple agrochemical inputs from profitable yields, minimizing the environmental repercussions of modern agriculture.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of carbon dot-mediated transformation in plant (epi)genomic studies.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-11 DOI: 10.1016/j.tplants.2025.02.006
Linwei She, Xuejiao Cheng, Mahmoud Tavakoli, Gennadii Borovskii, Wenli Zhang, Jian Huang
{"title":"Applications of carbon dot-mediated transformation in plant (epi)genomic studies.","authors":"Linwei She, Xuejiao Cheng, Mahmoud Tavakoli, Gennadii Borovskii, Wenli Zhang, Jian Huang","doi":"10.1016/j.tplants.2025.02.006","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.006","url":null,"abstract":"","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The genome awakens: transposon-mediated gene regulation.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-10 DOI: 10.1016/j.tplants.2025.02.005
Ileana Tossolini, Regina Mencia, Agustín L Arce, Pablo A Manavella

Current progress in plant genomics has uncovered important roles of transposable elements (TEs) in gene regulation and has transformed their perception from 'junk DNA' to key genomic players. Recent advances show how stress conditions trigger TE mobilization, introducing new regulatory sequences that can reshape plant responses to environmental changes. This review explores our current knowledge of how TEs, especially those located in gene-rich regions of plant genomes, regulate gene expression at different mechanistic levels. We highlight recent findings on how these elements influence transcriptional and epigenetic modifications as well as chromatin organization, and thus contribute to phenotypic diversity and plant adaptation. Understanding the regulatory potential of TEs creates novel opportunities for crop improvement and biotechnological applications, leading to a new hope for sustainable agriculture and innovation.

{"title":"The genome awakens: transposon-mediated gene regulation.","authors":"Ileana Tossolini, Regina Mencia, Agustín L Arce, Pablo A Manavella","doi":"10.1016/j.tplants.2025.02.005","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.005","url":null,"abstract":"<p><p>Current progress in plant genomics has uncovered important roles of transposable elements (TEs) in gene regulation and has transformed their perception from 'junk DNA' to key genomic players. Recent advances show how stress conditions trigger TE mobilization, introducing new regulatory sequences that can reshape plant responses to environmental changes. This review explores our current knowledge of how TEs, especially those located in gene-rich regions of plant genomes, regulate gene expression at different mechanistic levels. We highlight recent findings on how these elements influence transcriptional and epigenetic modifications as well as chromatin organization, and thus contribute to phenotypic diversity and plant adaptation. Understanding the regulatory potential of TEs creates novel opportunities for crop improvement and biotechnological applications, leading to a new hope for sustainable agriculture and innovation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143606440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Going beyond improving soil health: cover plants as contaminant removers in agriculture.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-04 DOI: 10.1016/j.tplants.2025.01.009
Pooja Sharma, Thomas Reitz, Surendra Pratap Singh, Anja Worrich, E Marie Muehe

Agriculture faces the increasing demands of a growing global population amid simultaneous challenges to soils from climate change and human-induced contamination. Cover plants are vital in sustainable agriculture, contributing to soil health improvement, erosion prevention, and enhanced climate resilience, but their role in contaminant management is underexplored. Herein we review the utilization of cover plants for remediating contaminants such as metals, organic pollutants, nitrate, antibiotics, antimicrobial resistance genes, plastics, and salts. We explore phytoremediation strategies - including phytoextraction, phytodegradation, and phytostabilization - in cover plant management. We highlight the challenges of selecting effective cover plants and the need for biomass removal of non-biodegradable contaminants, and we advocate incorporating phytoremediation concepts into sustainable agricultural management practices beyond nutrient cycling and climate resilience.

农业面临着全球人口增长带来的日益增长的需求,同时土壤也面临着气候变化和人为污染带来的挑战。覆盖植物在可持续农业中至关重要,有助于改善土壤健康、防止水土流失和增强气候适应能力,但其在污染物管理方面的作用却未得到充分探索。在此,我们回顾了利用覆盖植物修复污染物的情况,如金属、有机污染物、硝酸盐、抗生素、抗菌素抗性基因、塑料和盐类。我们探讨了覆盖植物管理中的植物修复策略,包括植物萃取、植物降解和植物稳定。我们强调了选择有效覆盖植物的挑战以及生物量去除不可生物降解污染物的必要性,并提倡将植物修复概念纳入可持续农业管理实践,而不仅仅局限于养分循环和气候适应能力。
{"title":"Going beyond improving soil health: cover plants as contaminant removers in agriculture.","authors":"Pooja Sharma, Thomas Reitz, Surendra Pratap Singh, Anja Worrich, E Marie Muehe","doi":"10.1016/j.tplants.2025.01.009","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.009","url":null,"abstract":"<p><p>Agriculture faces the increasing demands of a growing global population amid simultaneous challenges to soils from climate change and human-induced contamination. Cover plants are vital in sustainable agriculture, contributing to soil health improvement, erosion prevention, and enhanced climate resilience, but their role in contaminant management is underexplored. Herein we review the utilization of cover plants for remediating contaminants such as metals, organic pollutants, nitrate, antibiotics, antimicrobial resistance genes, plastics, and salts. We explore phytoremediation strategies - including phytoextraction, phytodegradation, and phytostabilization - in cover plant management. We highlight the challenges of selecting effective cover plants and the need for biomass removal of non-biodegradable contaminants, and we advocate incorporating phytoremediation concepts into sustainable agricultural management practices beyond nutrient cycling and climate resilience.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143568237","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking the genetic blueprint of bamboo for climate adaption.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-03 DOI: 10.1016/j.tplants.2025.02.007
Nannan Wang, Wenjia Wang, Qiang Zhu

In a recent study, Hou et al. developed a high-resolution, haplotype-based pangenome for moso bamboo (Phyllostachys edulis), revealing significant genetic diversity and over 1000 climate-associated variants. Their findings highlight adaptive mechanisms for the ecological resilience of bamboo, providing crucial insights for climate-resilient breeding and conservation to ensure the long-term ecological and economic benefits of moso bamboo amid climate change.

{"title":"Unlocking the genetic blueprint of bamboo for climate adaption.","authors":"Nannan Wang, Wenjia Wang, Qiang Zhu","doi":"10.1016/j.tplants.2025.02.007","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.007","url":null,"abstract":"<p><p>In a recent study, Hou et al. developed a high-resolution, haplotype-based pangenome for moso bamboo (Phyllostachys edulis), revealing significant genetic diversity and over 1000 climate-associated variants. Their findings highlight adaptive mechanisms for the ecological resilience of bamboo, providing crucial insights for climate-resilient breeding and conservation to ensure the long-term ecological and economic benefits of moso bamboo amid climate change.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143558181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the evolution of C4 photosynthesis.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-03-03 DOI: 10.1016/j.tplants.2025.02.008
Syed Adeel Zafar, Julia Bailey-Serres

C4 photosynthesis underpins the remarkable productivity of certain crops, including maize and sorghum. How the C4 pathway emerged from ancestral C3 relatives has been unclear. Swift et al. have deciphered how a pre-existing cis-regulatory code for bundle-sheath gene expression was conscripted to enable C4 photosynthesis.

{"title":"Decoding the evolution of C4 photosynthesis.","authors":"Syed Adeel Zafar, Julia Bailey-Serres","doi":"10.1016/j.tplants.2025.02.008","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.02.008","url":null,"abstract":"<p><p>C4 photosynthesis underpins the remarkable productivity of certain crops, including maize and sorghum. How the C4 pathway emerged from ancestral C3 relatives has been unclear. Swift et al. have deciphered how a pre-existing cis-regulatory code for bundle-sheath gene expression was conscripted to enable C4 photosynthesis.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143558180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Plant Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1