首页 > 最新文献

Trends in Plant Science最新文献

英文 中文
DELLA family proteins function beyond the GA pathway.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-17 DOI: 10.1016/j.tplants.2025.01.007
Jin-Dong Wang, Qiao-Quan Liu, Qian-Feng Li

DELLA degradation is controlled not only by gibberellic acid (GA) but also by various GA/GID1-independent factors such as light, temperature, and shade. New insights on the evolution of DELLA family proteins and the biological role of DELLA-like proteins in seed traits provides valuable directions for future crop breeding programs.

{"title":"DELLA family proteins function beyond the GA pathway.","authors":"Jin-Dong Wang, Qiao-Quan Liu, Qian-Feng Li","doi":"10.1016/j.tplants.2025.01.007","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.007","url":null,"abstract":"<p><p>DELLA degradation is controlled not only by gibberellic acid (GA) but also by various GA/GID1-independent factors such as light, temperature, and shade. New insights on the evolution of DELLA family proteins and the biological role of DELLA-like proteins in seed traits provides valuable directions for future crop breeding programs.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143450320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Restoring unbalanced rhizosphere: microbiome transplants combatting leaf diseases.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-13 DOI: 10.1016/j.tplants.2025.01.011
Ademir S F Araujo, Arthur P A Pereira, Erika V de Medeiros, Lucas W Mendes

Similar to humans, plants experience microbiome imbalance, which increases their vulnerability to pathogens. In a recent study, Ketehouli et al. applied a soil microbiome transplant (SMT) to restore the microbiome balance, which potentially reduced the severity of leaf diseases. Here, we examine this approach, highlighting its limitation and offering perspectives on its use for controlling leaf diseases in plants.

{"title":"Restoring unbalanced rhizosphere: microbiome transplants combatting leaf diseases.","authors":"Ademir S F Araujo, Arthur P A Pereira, Erika V de Medeiros, Lucas W Mendes","doi":"10.1016/j.tplants.2025.01.011","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.011","url":null,"abstract":"<p><p>Similar to humans, plants experience microbiome imbalance, which increases their vulnerability to pathogens. In a recent study, Ketehouli et al. applied a soil microbiome transplant (SMT) to restore the microbiome balance, which potentially reduced the severity of leaf diseases. Here, we examine this approach, highlighting its limitation and offering perspectives on its use for controlling leaf diseases in plants.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143426315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sophisticated regulation of broad-spectrum disease resistance in maize.
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-04 DOI: 10.1016/j.tplants.2025.01.002
Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou

Maize production suffers largely from the unpredictable and often simultaneous occurrence of multiple diseases, highlighting the urgent need for broad-spectrum resistant (BSR) genes. Recently, Zhu et al. identified a ZmCPK39-ZmDi19-ZmPR10 module that confers resistance to three maize (Zea mays) foliar diseases, providing a strategic framework to improve maize BSR.

{"title":"Sophisticated regulation of broad-spectrum disease resistance in maize.","authors":"Jiankun Li, Yanwen Yu, Yihao Zhang, Mingyue Gou","doi":"10.1016/j.tplants.2025.01.002","DOIUrl":"https://doi.org/10.1016/j.tplants.2025.01.002","url":null,"abstract":"<p><p>Maize production suffers largely from the unpredictable and often simultaneous occurrence of multiple diseases, highlighting the urgent need for broad-spectrum resistant (BSR) genes. Recently, Zhu et al. identified a ZmCPK39-ZmDi19-ZmPR10 module that confers resistance to three maize (Zea mays) foliar diseases, providing a strategic framework to improve maize BSR.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":""},"PeriodicalIF":17.3,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143256833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two mutations in one QTL confer shattering resistance. 一个QTL中的两个突变赋予粉碎抗性。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-12-07 DOI: 10.1016/j.tplants.2024.11.008
Vijay Gahlaut, Vandana Jaiswal

Resistance to shattering is essential for seed production in domesticated crops. In a recent study, Li et al. found that this trait arose in soybean through mutations in two genes, Shattering1 (Sh1) and Pod dehiscence1 (Pdh1), within a single quantitative trait locus (QTL). Sh1 reduces fiber cap cell wall thickness, while Pdh1 regulates lignin distribution. These genes could be valuable targets for breeding shattering-resistant crops.

抗碎裂对驯化作物的种子生产至关重要。在最近的一项研究中,Li等人发现该性状在大豆中是通过单个数量性状位点(QTL)内的两个基因Shattering1 (Sh1)和Pod dehiscence1 (Pdh1)发生突变而产生的。Sh1降低纤维帽细胞壁厚度,Pdh1调节木质素分布。这些基因可能是培育抗碎裂作物的宝贵目标。
{"title":"Two mutations in one QTL confer shattering resistance.","authors":"Vijay Gahlaut, Vandana Jaiswal","doi":"10.1016/j.tplants.2024.11.008","DOIUrl":"10.1016/j.tplants.2024.11.008","url":null,"abstract":"<p><p>Resistance to shattering is essential for seed production in domesticated crops. In a recent study, Li et al. found that this trait arose in soybean through mutations in two genes, Shattering1 (Sh1) and Pod dehiscence1 (Pdh1), within a single quantitative trait locus (QTL). Sh1 reduces fiber cap cell wall thickness, while Pdh1 regulates lignin distribution. These genes could be valuable targets for breeding shattering-resistant crops.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"131-133"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142795216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The interplay of singlet oxygen and ABI4 in plant growth regulation. 单线态氧和 ABI4 在植物生长调节中的相互作用
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-15 DOI: 10.1016/j.tplants.2024.09.007
Zhong-Wei Zhang, Yu-Fan Fu, Guang-Deng Chen, Christiane Reinbothe, Steffen Reinbothe, Shu Yuan

Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.

脱落酸(ABA)和 AP2/ERF(APETALA 2/ETHYLENE-RESPONSIVE FACTOR)型转录因子 ABA INSENSITIVE 4(ABI4)控制着植物的生长和发育。我们回顾了拟南芥荧光突变体叶绿体中产生的单线态氧和 ABI4 如何在转录和翻译重编程中合作,导致植物停止生长或死亡。依赖单线态氧和 ABI4 的叶绿体-细胞核逆向信号转导的关键因素涉及叶绿体 EXECUTER(EX)1 和 EX2 蛋白以及细胞核 WRKY 转录因子。为研究单线态氧信号转导而设计的突变体,如果缺乏 ABI4 或 EX1 和 EX2 蛋白,则不会显示出单线态氧的大部分生长效应。我们提出了一个将 ABI4 定位于 WRKY 转录因子以及 EX1 和 EX2 下游的模型。
{"title":"The interplay of singlet oxygen and ABI4 in plant growth regulation.","authors":"Zhong-Wei Zhang, Yu-Fan Fu, Guang-Deng Chen, Christiane Reinbothe, Steffen Reinbothe, Shu Yuan","doi":"10.1016/j.tplants.2024.09.007","DOIUrl":"10.1016/j.tplants.2024.09.007","url":null,"abstract":"<p><p>Abscisic acid (ABA) and the AP2/ERF (APETALA 2/ETHYLENE-RESPONSIVE FACTOR)-type transcription factor ABA INSENSITIVE 4 (ABI4) control plant growth and development. We review how singlet oxygen, which is produced in chloroplasts of the fluorescent mutant of Arabidopsis thaliana (arabidopsis), and ABI4 may cooperate in transcriptional and translational reprogramming to cause plants to halt growth or demise. Key elements of singlet oxygen- and ABI4-dependent chloroplast-to-nucleus retrograde signaling involve the chloroplast EXECUTER (EX) 1 and EX2 proteins as well as nuclear WRKY transcription factors. Mutants designed to study singlet oxygen signaling, that lack either ABI4 or the EX1 and EX2 proteins, do not show most of the growth effects of singlet oxygen. We propose a model that positions ABI4 downstream of WRKY transcription factors and EX1 and EX2.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"156-166"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142475512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Does mRNA targeting explain gene retention in chloroplasts? mRNA 靶向能否解释叶绿体中基因的保留?
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-22 DOI: 10.1016/j.tplants.2024.09.017
Wolfgang R Hess, Annegret Wilde, Conrad W Mullineaux

During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.

在从蓝藻进化的过程中,质体将其大部分基因交给了宿主细胞核,但保留了一组在细胞器内转录和翻译的核心基因。以往的解释包括:密码子或碱基组成不兼容、某些蛋白质跨双层膜导入存在问题,或需要与电子传递链的氧化还原状态配合进行严格调控。在这篇观点文章中,我们提出了 "mRNA 靶向假说"。对蓝藻的研究表明,编码核心光合蛋白的 mRNA 具有对膜靶向和协调复合体组装早期步骤至关重要的特征。我们认为,mRNA 分子需要在类囊体表面密切参与,这就是核心光合基因保留在叶绿体中的原因。
{"title":"Does mRNA targeting explain gene retention in chloroplasts?","authors":"Wolfgang R Hess, Annegret Wilde, Conrad W Mullineaux","doi":"10.1016/j.tplants.2024.09.017","DOIUrl":"10.1016/j.tplants.2024.09.017","url":null,"abstract":"<p><p>During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"147-155"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142508727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding resilience: ecology, regulation, and evolution of biosynthetic gene clusters. 解码复原力:生物合成基因簇的生态学、调控和进化。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-10 DOI: 10.1016/j.tplants.2024.09.008
George Lister Cawood, Jurriaan Ton

Secondary metabolism is crucial for plant survival and can generate chemistry with nutritional, therapeutic, and industrial value. Biosynthetic genes of selected secondary metabolites cluster within localised chromosomal regions. The arrangement of these biosynthetic gene clusters (BGCs) challenges the long-held model of random gene order in eukaryotes, raising questions about their regulation, ecological significance, and evolution. In this review, we address these questions by exploring the contribution of BGCs to ecologically relevant plant-biotic interactions, while also evaluating the molecular-(epi)genetic mechanisms controlling their coordinated stress- and tissue-specific expression. Based on evidence that BGCs have distinct chromatin signatures and are enriched with transposable elements (TEs), we integrate emerging hypotheses into an updated evolutionary model emphasising how stress-induced epigenetic processes have shaped BGC formation.

次生代谢对植物的生存至关重要,并能产生具有营养、治疗和工业价值的化学物质。某些次生代谢物的生物合成基因聚集在局部染色体区域内。这些生物合成基因簇(BGC)的排列方式挑战了真核生物中长期存在的随机基因顺序模式,提出了有关其调控、生态意义和进化的问题。在这篇综述中,我们通过探讨生物合成基因簇对生态相关的植物-生物相互作用的贡献,同时评估控制其协调胁迫和组织特异性表达的分子-(外)遗传机制,来解决这些问题。有证据表明,BGCs 具有独特的染色质特征并富含转座元件(TEs),基于这些证据,我们将新出现的假说整合到一个最新的进化模型中,强调胁迫诱导的表观遗传过程如何塑造了 BGC 的形成。
{"title":"Decoding resilience: ecology, regulation, and evolution of biosynthetic gene clusters.","authors":"George Lister Cawood, Jurriaan Ton","doi":"10.1016/j.tplants.2024.09.008","DOIUrl":"10.1016/j.tplants.2024.09.008","url":null,"abstract":"<p><p>Secondary metabolism is crucial for plant survival and can generate chemistry with nutritional, therapeutic, and industrial value. Biosynthetic genes of selected secondary metabolites cluster within localised chromosomal regions. The arrangement of these biosynthetic gene clusters (BGCs) challenges the long-held model of random gene order in eukaryotes, raising questions about their regulation, ecological significance, and evolution. In this review, we address these questions by exploring the contribution of BGCs to ecologically relevant plant-biotic interactions, while also evaluating the molecular-(epi)genetic mechanisms controlling their coordinated stress- and tissue-specific expression. Based on evidence that BGCs have distinct chromatin signatures and are enriched with transposable elements (TEs), we integrate emerging hypotheses into an updated evolutionary model emphasising how stress-induced epigenetic processes have shaped BGC formation.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"185-198"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142406916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single same-cell multiome for dissecting key plant traits. 用于剖析植物关键性状的单细胞多基因组
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-10-31 DOI: 10.1016/j.tplants.2024.10.008
Rohini Garg, Sunil Kumar Sahu, Mukesh Jain

Understanding molecular dynamics at the single cell level is crucial to understand plant traits. Recently, Liu et al. and Cui et al. reported multiome analysis in the same cell/nucleus to dissect the key plant traits (osmotic stress response and pod development). Their results provide novel insights into pathways and regulatory networks at a single cell resolution.

了解单细胞水平的分子动态对于了解植物性状至关重要。最近,Liu 等人和 Cui 等人报道了在同一细胞/核中进行多组分析,以剖析植物的关键性状(渗透胁迫响应和豆荚发育)。他们的研究结果提供了单细胞分辨率的通路和调控网络的新见解。
{"title":"Single same-cell multiome for dissecting key plant traits.","authors":"Rohini Garg, Sunil Kumar Sahu, Mukesh Jain","doi":"10.1016/j.tplants.2024.10.008","DOIUrl":"10.1016/j.tplants.2024.10.008","url":null,"abstract":"<p><p>Understanding molecular dynamics at the single cell level is crucial to understand plant traits. Recently, Liu et al. and Cui et al. reported multiome analysis in the same cell/nucleus to dissect the key plant traits (osmotic stress response and pod development). Their results provide novel insights into pathways and regulatory networks at a single cell resolution.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"128-130"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142564053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plant memory and communication of encounters. 植物记忆和相遇交流
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-11-14 DOI: 10.1016/j.tplants.2024.09.012
Judit Dobránszki, Dolores R Agius, Margot M J Berger, Panagiotis N Moschou, Philippe Gallusci, Federico Martinelli

Plants can communicate with each other and other living organisms in a very sophisticated manner. They use biological molecules and even physical cues to establish a molecular dialogue with beneficial organisms as well as with their predators and pathogens. Several studies were recently published that explore how plants communicate with each other about their previous encounters or stressful experiences. However, there is an almost complete lack of knowledge about how these intra- and interspecies communications are directly regulated at the epigenetic level. In this perspective article we provide new hypotheses for the possible epigenetic modifications that regulate plant responses at the communication level.

植物之间以及植物与其他生物之间可以进行非常复杂的交流。它们利用生物分子甚至物理线索,与有益生物以及捕食者和病原体建立分子对话。最近发表的几项研究探讨了植物如何相互交流它们以前的遭遇或压力经历。然而,对于这些种内和种间交流是如何在表观遗传水平上直接调节的,我们几乎完全不了解。在这篇视角独特的文章中,我们对在交流水平上调控植物反应的可能表观遗传修饰提出了新的假设。
{"title":"Plant memory and communication of encounters.","authors":"Judit Dobránszki, Dolores R Agius, Margot M J Berger, Panagiotis N Moschou, Philippe Gallusci, Federico Martinelli","doi":"10.1016/j.tplants.2024.09.012","DOIUrl":"10.1016/j.tplants.2024.09.012","url":null,"abstract":"<p><p>Plants can communicate with each other and other living organisms in a very sophisticated manner. They use biological molecules and even physical cues to establish a molecular dialogue with beneficial organisms as well as with their predators and pathogens. Several studies were recently published that explore how plants communicate with each other about their previous encounters or stressful experiences. However, there is an almost complete lack of knowledge about how these intra- and interspecies communications are directly regulated at the epigenetic level. In this perspective article we provide new hypotheses for the possible epigenetic modifications that regulate plant responses at the communication level.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"199-212"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142639995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guard cells and mesophyll: a delicate metabolic relationship. 保卫细胞和叶肉:微妙的代谢关系。
IF 17.3 1区 生物学 Q1 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-12-06 DOI: 10.1016/j.tplants.2024.11.005
Welder Alves da Silva, Marcelle Ferreira-Silva, Wagner L Araújo, Adriano Nunes-Nesi

Understanding cell type-specific metabolism, especially under unfavorable conditions, is paramount. Recent discoveries by Shi et al. and Auler et al. linked to stomatal closure stimuli, abscisic acid (ABA), and reactive oxygen species (ROS) have pointed to new avenues to be explored to elucidate the regulatory mechanisms linked to starch and malate metabolism in guard cells during stress.

了解细胞类型特异性代谢,特别是在不利条件下,是至关重要的。Shi et al.和Auler et al.最近的发现与气孔关闭刺激、脱落酸(ABA)和活性氧(ROS)有关,这为阐明应激状态下保护细胞中淀粉和苹果酸代谢的调节机制指明了新的途径。
{"title":"Guard cells and mesophyll: a delicate metabolic relationship.","authors":"Welder Alves da Silva, Marcelle Ferreira-Silva, Wagner L Araújo, Adriano Nunes-Nesi","doi":"10.1016/j.tplants.2024.11.005","DOIUrl":"10.1016/j.tplants.2024.11.005","url":null,"abstract":"<p><p>Understanding cell type-specific metabolism, especially under unfavorable conditions, is paramount. Recent discoveries by Shi et al. and Auler et al. linked to stomatal closure stimuli, abscisic acid (ABA), and reactive oxygen species (ROS) have pointed to new avenues to be explored to elucidate the regulatory mechanisms linked to starch and malate metabolism in guard cells during stress.</p>","PeriodicalId":23264,"journal":{"name":"Trends in Plant Science","volume":" ","pages":"125-127"},"PeriodicalIF":17.3,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142792479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Plant Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1