Optimization of isolation and concentration of the common freshwater cyanobacterial toxins ATX-a, CYN and MC-LR using standard techniques, optimization of cyanobacteria growth
{"title":"Optimization of isolation and concentration of the common freshwater cyanobacterial toxins ATX-a, CYN and MC-LR using standard techniques, optimization of cyanobacteria growth","authors":"Saravana Kumar Selvaraj , Bartosz Lelito , Michal Adamski , Ariel Kaminski","doi":"10.1016/j.toxicon.2024.108137","DOIUrl":null,"url":null,"abstract":"<div><div>Some of the most commonly identified freshwater toxins are anatoxin-a (ATX-a), cylindrospermopsin (CYN), and microcystin-LR (MC-LR). The aim of this paper was to compare different methods of extracting and concentrating these cyanotoxins and check the impact of selected physical factors on the accumulation of biomass of <em>Dolichospermum flos-aquae, Microcystis aeruginosa,</em> and <em>Raphidiopsis raciborskii</em>. The effect of different cyanobacteria cultivation conditions on the amount of cyanotoxins synthesized showed no significant changes over time in the average concentration of all tested toxins in the medium compared to the control. Mixing cultures increases the intracellular content of ATX-a. Aerating also positively affects the concentration of MC-LR intracellularly. In order to optimize the solid phase extraction (SPE) process of toxins, the C18 phase or activated carbon was used. In general, higher toxin recoveries were achieved when using the C18 phase. The best result was achieved for ATX-a, 94% recovery with elution using methanol with 0.1% trifluoroacetic acid (TFA). For MC-LR, the best recovery was 59%, and for CYN 22%. The study evaluated the various methods to release cyanotoxins from cyanobacteria showed that: the highest ATX-a concentration (0.60 μg/mg d.w) was obtained using MilliQ water and microwave treatment for 10–15 s. For MC-LR, the highest extracted amount (6.73 μg/mg d.w) resulted from methanol treatment and boiling at 100 °C for 15 min. CYN extraction was the most effective by using MilliQ water and alternative freezing/thawing (1.54 μg/mg d.w). In conclusion, changing the optimal parameters of cyanobacterial cultivation, only slightly affects the increase in biomass accumulation and synthesis of cyanobacterial toxins. In the case of ATX, the key is the use of the TFA additive in the SPE process. No single method has been identified as the ideal approach for isolating various intracellular cyanotoxins.</div></div>","PeriodicalId":23289,"journal":{"name":"Toxicon","volume":"251 ","pages":"Article 108137"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicon","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041010124007098","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Some of the most commonly identified freshwater toxins are anatoxin-a (ATX-a), cylindrospermopsin (CYN), and microcystin-LR (MC-LR). The aim of this paper was to compare different methods of extracting and concentrating these cyanotoxins and check the impact of selected physical factors on the accumulation of biomass of Dolichospermum flos-aquae, Microcystis aeruginosa, and Raphidiopsis raciborskii. The effect of different cyanobacteria cultivation conditions on the amount of cyanotoxins synthesized showed no significant changes over time in the average concentration of all tested toxins in the medium compared to the control. Mixing cultures increases the intracellular content of ATX-a. Aerating also positively affects the concentration of MC-LR intracellularly. In order to optimize the solid phase extraction (SPE) process of toxins, the C18 phase or activated carbon was used. In general, higher toxin recoveries were achieved when using the C18 phase. The best result was achieved for ATX-a, 94% recovery with elution using methanol with 0.1% trifluoroacetic acid (TFA). For MC-LR, the best recovery was 59%, and for CYN 22%. The study evaluated the various methods to release cyanotoxins from cyanobacteria showed that: the highest ATX-a concentration (0.60 μg/mg d.w) was obtained using MilliQ water and microwave treatment for 10–15 s. For MC-LR, the highest extracted amount (6.73 μg/mg d.w) resulted from methanol treatment and boiling at 100 °C for 15 min. CYN extraction was the most effective by using MilliQ water and alternative freezing/thawing (1.54 μg/mg d.w). In conclusion, changing the optimal parameters of cyanobacterial cultivation, only slightly affects the increase in biomass accumulation and synthesis of cyanobacterial toxins. In the case of ATX, the key is the use of the TFA additive in the SPE process. No single method has been identified as the ideal approach for isolating various intracellular cyanotoxins.
期刊介绍:
Toxicon has an open access mirror Toxicon: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. An introductory offer Toxicon: X - full waiver of the Open Access fee.
Toxicon''s "aims and scope" are to publish:
-articles containing the results of original research on problems related to toxins derived from animals, plants and microorganisms
-papers on novel findings related to the chemical, pharmacological, toxicological, and immunological properties of natural toxins
-molecular biological studies of toxins and other genes from poisonous and venomous organisms that advance understanding of the role or function of toxins
-clinical observations on poisoning and envenoming where a new therapeutic principle has been proposed or a decidedly superior clinical result has been obtained.
-material on the use of toxins as tools in studying biological processes and material on subjects related to venom and antivenom problems.
-articles on the translational application of toxins, for example as drugs and insecticides
-epidemiological studies on envenoming or poisoning, so long as they highlight a previously unrecognised medical problem or provide insight into the prevention or medical treatment of envenoming or poisoning. Retrospective surveys of hospital records, especially those lacking species identification, will not be considered for publication. Properly designed prospective community-based surveys are strongly encouraged.
-articles describing well-known activities of venoms, such as antibacterial, anticancer, and analgesic activities of arachnid venoms, without any attempt to define the mechanism of action or purify the active component, will not be considered for publication in Toxicon.
-review articles on problems related to toxinology.
To encourage the exchange of ideas, sections of the journal may be devoted to Short Communications, Letters to the Editor and activities of the affiliated societies.