Evaluation of Focus Measures for Hyperspectral Imaging Microscopy Using Principal Component Analysis.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-09-26 DOI:10.3390/jimaging10100240
Humbat Nasibov
{"title":"Evaluation of Focus Measures for Hyperspectral Imaging Microscopy Using Principal Component Analysis.","authors":"Humbat Nasibov","doi":"10.3390/jimaging10100240","DOIUrl":null,"url":null,"abstract":"<p><p>An automatic focusing system is a crucial component of automated microscopes, adjusting the lens-to-object distance to find the optimal focus by maximizing the focus measure (FM) value. This study develops reliable autofocus methods for hyperspectral imaging microscope systems, essential for extracting accurate chemical and spatial information from hyperspectral datacubes. Since FMs are domain- and application-specific, commonly, their performance is evaluated using verified focus positions. For example, in optical microscopy, the sharpness/contrast of visual peculiarities of a sample under testing typically guides as an anchor to determine the best focus position, but this approach is challenging in hyperspectral imaging systems (HSISs), where instant two-dimensional hyperspectral images do not always possess human-comprehensible visual information. To address this, a principal component analysis (PCA) was used to define the optimal (\"ideal\") optical focus position in HSIS, providing a benchmark for assessing 22 FMs commonly used in other imaging fields. Evaluations utilized hyperspectral images from visible (400-1100 nm) and near-infrared (900-1700 nm) bands across four different HSIS setups with varying magnifications. Results indicate that gradient-based FMs are the fastest and most reliable operators in this context.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508558/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10100240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

An automatic focusing system is a crucial component of automated microscopes, adjusting the lens-to-object distance to find the optimal focus by maximizing the focus measure (FM) value. This study develops reliable autofocus methods for hyperspectral imaging microscope systems, essential for extracting accurate chemical and spatial information from hyperspectral datacubes. Since FMs are domain- and application-specific, commonly, their performance is evaluated using verified focus positions. For example, in optical microscopy, the sharpness/contrast of visual peculiarities of a sample under testing typically guides as an anchor to determine the best focus position, but this approach is challenging in hyperspectral imaging systems (HSISs), where instant two-dimensional hyperspectral images do not always possess human-comprehensible visual information. To address this, a principal component analysis (PCA) was used to define the optimal ("ideal") optical focus position in HSIS, providing a benchmark for assessing 22 FMs commonly used in other imaging fields. Evaluations utilized hyperspectral images from visible (400-1100 nm) and near-infrared (900-1700 nm) bands across four different HSIS setups with varying magnifications. Results indicate that gradient-based FMs are the fastest and most reliable operators in this context.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用主成分分析法评估高光谱成像显微镜的焦点测量。
自动对焦系统是自动显微镜的重要组成部分,它通过最大化对焦测量(FM)值来调整镜头到物体的距离,从而找到最佳焦点。本研究为高光谱成像显微镜系统开发了可靠的自动对焦方法,这对于从高光谱数据集提取准确的化学和空间信息至关重要。由于自动对焦是针对特定领域和应用的,因此通常使用经过验证的对焦位置来评估其性能。例如,在光学显微镜中,被测样品视觉特征的清晰度/对比度通常可作为确定最佳聚焦位置的锚点,但这种方法在高光谱成像系统(HSIS)中具有挑战性,因为即时的二维高光谱图像并不总是拥有人类可理解的视觉信息。为了解决这个问题,我们使用主成分分析(PCA)来定义 HSIS 中的最佳("理想")光学焦点位置,为评估其他成像领域常用的 22 个调频提供基准。评估使用了可见光(400-1100 纳米)和近红外(900-1700 纳米)波段的高光谱图像,涉及四种不同放大倍率的 HSIS 设置。结果表明,在这种情况下,基于梯度的调频是最快、最可靠的操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
A Specialized Pipeline for Efficient and Reliable 3D Semantic Model Reconstruction of Buildings from Indoor Point Clouds. Design and Use of a Custom Phantom for Regular Tests of Radiography Apparatus: A Feasibility Study. Differentiation of Benign and Malignant Neck Neoplastic Lesions Using Diffusion-Weighted Magnetic Resonance Imaging. Investigating the Sim-to-Real Generalizability of Deep Learning Object Detection Models. Quantitative Comparison of Color-Coded Parametric Imaging Technologies Based on Digital Subtraction and Digital Variance Angiography: A Retrospective Observational Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1