Impact of Data Capture Methods on 3D Reconstruction with Gaussian Splatting.

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2025-02-18 DOI:10.3390/jimaging11020065
Dimitar Rangelov, Sierd Waanders, Kars Waanders, Maurice van Keulen, Radoslav Miltchev
{"title":"Impact of Data Capture Methods on 3D Reconstruction with Gaussian Splatting.","authors":"Dimitar Rangelov, Sierd Waanders, Kars Waanders, Maurice van Keulen, Radoslav Miltchev","doi":"10.3390/jimaging11020065","DOIUrl":null,"url":null,"abstract":"<p><p>This study examines how different filming techniques can enhance the quality of 3D reconstructions with a particular focus on their use in indoor crime scene investigations. Using Neural Radiance Fields (NeRF) and Gaussian Splatting, we explored how factors like camera orientation, filming speed, data layering, and scanning path affect the detail and clarity of 3D reconstructions. Through experiments in a mock crime scene apartment, we identified optimal filming methods that reduce noise and artifacts, delivering clearer and more accurate reconstructions. Filming in landscape mode, at a slower speed, with at least three layers and focused on key objects produced the most effective results. These insights provide valuable guidelines for professionals in forensics, architecture, and cultural heritage preservation, helping them capture realistic high-quality 3D representations. This study also highlights the potential for future research to expand on these findings by exploring other algorithms, camera parameters, and real-time adjustment techniques.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"11 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11855968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging11020065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines how different filming techniques can enhance the quality of 3D reconstructions with a particular focus on their use in indoor crime scene investigations. Using Neural Radiance Fields (NeRF) and Gaussian Splatting, we explored how factors like camera orientation, filming speed, data layering, and scanning path affect the detail and clarity of 3D reconstructions. Through experiments in a mock crime scene apartment, we identified optimal filming methods that reduce noise and artifacts, delivering clearer and more accurate reconstructions. Filming in landscape mode, at a slower speed, with at least three layers and focused on key objects produced the most effective results. These insights provide valuable guidelines for professionals in forensics, architecture, and cultural heritage preservation, helping them capture realistic high-quality 3D representations. This study also highlights the potential for future research to expand on these findings by exploring other algorithms, camera parameters, and real-time adjustment techniques.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据采集方法对高斯拼接三维重建的影响
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
An Efficient Forest Smoke Detection Approach Using Convolutional Neural Networks and Attention Mechanisms. Direct Distillation: A Novel Approach for Efficient Diffusion Model Inference. Impact of Data Capture Methods on 3D Reconstruction with Gaussian Splatting. Non-Hospitalized Long COVID Patients Exhibit Reduced Retinal Capillary Perfusion: A Prospective Cohort Study. Unraveling the Role of PET in Cervical Cancer: Review of Current Applications and Future Horizons.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1