A comprehensive survey of space robotic manipulators for on-orbit servicing.

IF 2.9 Q2 ROBOTICS Frontiers in Robotics and AI Pub Date : 2024-10-09 eCollection Date: 2024-01-01 DOI:10.3389/frobt.2024.1470950
Mohammad Alizadeh, Zheng H Zhu
{"title":"A comprehensive survey of space robotic manipulators for on-orbit servicing.","authors":"Mohammad Alizadeh, Zheng H Zhu","doi":"10.3389/frobt.2024.1470950","DOIUrl":null,"url":null,"abstract":"<p><p>On-Orbit Servicing (OOS) robots are transforming space exploration by enabling vital maintenance and repair of spacecraft directly in space. However, achieving precise and safe manipulation in microgravity necessitates overcoming significant challenges. This survey delves into four crucial areas essential for successful OOS manipulation: object state estimation, motion planning, and feedback control. Techniques from traditional vision to advanced X-ray and neural network methods are explored for object state estimation. Strategies for fuel-optimized trajectories, docking maneuvers, and collision avoidance are examined in motion planning. The survey also explores control methods for various scenarios, including cooperative manipulation and handling uncertainties, in feedback control. Additionally, this survey examines how Machine learning techniques can further propel OOS robots towards more complex and delicate tasks in space.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1470950"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1470950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

On-Orbit Servicing (OOS) robots are transforming space exploration by enabling vital maintenance and repair of spacecraft directly in space. However, achieving precise and safe manipulation in microgravity necessitates overcoming significant challenges. This survey delves into four crucial areas essential for successful OOS manipulation: object state estimation, motion planning, and feedback control. Techniques from traditional vision to advanced X-ray and neural network methods are explored for object state estimation. Strategies for fuel-optimized trajectories, docking maneuvers, and collision avoidance are examined in motion planning. The survey also explores control methods for various scenarios, including cooperative manipulation and handling uncertainties, in feedback control. Additionally, this survey examines how Machine learning techniques can further propel OOS robots towards more complex and delicate tasks in space.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于在轨服务的空间机器人机械手综合调查。
在轨维修(OOS)机器人能够直接在太空中对航天器进行重要的维护和修理,从而改变了太空探索。然而,要在微重力环境下实现精确而安全的操作,必须克服重大挑战。本研究将深入探讨成功进行 OOS 操作所必需的四个关键领域:物体状态估计、运动规划和反馈控制。本文探讨了从传统视觉到先进的 X 射线和神经网络方法等用于物体状态估计的技术。在运动规划中,研究了燃料优化轨迹、对接机动和避免碰撞的策略。调查还探讨了各种情况下的控制方法,包括反馈控制中的协同操纵和处理不确定性。此外,本研究还探讨了机器学习技术如何进一步推动开放源码操作系统机器人在太空中执行更复杂、更精细的任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
期刊最新文献
Embedding-based pair generation for contrastive representation learning in audio-visual surveillance data. Advanced robotics for automated EV battery testing using electrochemical impedance spectroscopy. Pig tongue soft robot mimicking intrinsic tongue muscle structure. A fast monocular 6D pose estimation method for textureless objects based on perceptual hashing and template matching. Semantic segmentation using synthetic images of underwater marine-growth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1