Wei-Cheng Wang, Sander De Coninck, Sam Leroux, Pieter Simoens
{"title":"Embedding-based pair generation for contrastive representation learning in audio-visual surveillance data.","authors":"Wei-Cheng Wang, Sander De Coninck, Sam Leroux, Pieter Simoens","doi":"10.3389/frobt.2024.1490718","DOIUrl":null,"url":null,"abstract":"<p><p>Smart cities deploy various sensors such as microphones and RGB cameras to collect data to improve the safety and comfort of the citizens. As data annotation is expensive, self-supervised methods such as contrastive learning are used to learn audio-visual representations for downstream tasks. Focusing on surveillance data, we investigate two common limitations of audio-visual contrastive learning: false negatives and the minimal sufficient information bottleneck. Irregular, yet frequently recurring events can lead to a considerable number of false-negative pairs and disrupt the model's training. To tackle this challenge, we propose a novel method for generating contrastive pairs based on the distance between embeddings of different modalities, rather than relying solely on temporal cues. The semantically synchronized pairs can then be used to ease the minimal sufficient information bottleneck along with the new loss function for multiple positives. We experimentally validate our approach on real-world data and show how the learnt representations can be used for different downstream tasks, including audio-visual event localization, anomaly detection, and event search. Our approach reaches similar performance as state-of-the-art modality- and task-specific approaches.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"11 ","pages":"1490718"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2024.1490718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Smart cities deploy various sensors such as microphones and RGB cameras to collect data to improve the safety and comfort of the citizens. As data annotation is expensive, self-supervised methods such as contrastive learning are used to learn audio-visual representations for downstream tasks. Focusing on surveillance data, we investigate two common limitations of audio-visual contrastive learning: false negatives and the minimal sufficient information bottleneck. Irregular, yet frequently recurring events can lead to a considerable number of false-negative pairs and disrupt the model's training. To tackle this challenge, we propose a novel method for generating contrastive pairs based on the distance between embeddings of different modalities, rather than relying solely on temporal cues. The semantically synchronized pairs can then be used to ease the minimal sufficient information bottleneck along with the new loss function for multiple positives. We experimentally validate our approach on real-world data and show how the learnt representations can be used for different downstream tasks, including audio-visual event localization, anomaly detection, and event search. Our approach reaches similar performance as state-of-the-art modality- and task-specific approaches.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.