Recent Advancements in MXene-Based Biosensors for Health and Environmental Applications-A Review.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-10-12 DOI:10.3390/bios14100497
Ashraf Ali, Sanjit Manohar Majhi, Lamia A Siddig, Abdul Hakeem Deshmukh, Hongli Wen, Naser N Qamhieh, Yaser E Greish, Saleh T Mahmoud
{"title":"Recent Advancements in MXene-Based Biosensors for Health and Environmental Applications-A Review.","authors":"Ashraf Ali, Sanjit Manohar Majhi, Lamia A Siddig, Abdul Hakeem Deshmukh, Hongli Wen, Naser N Qamhieh, Yaser E Greish, Saleh T Mahmoud","doi":"10.3390/bios14100497","DOIUrl":null,"url":null,"abstract":"<p><p>Owing to their unique physicochemical properties, MXenes have emerged as promising materials for biosensing applications. This review paper comprehensively explores the recent advancements in MXene-based biosensors for health and environmental applications. This review begins with an introduction to MXenes and biosensors, outlining various types of biosensors including electrochemical, enzymatic, optical, and fluorescent-based systems. The synthesis methods and characteristics of MXenes are thoroughly discussed, highlighting the importance of these processes in tailoring MXenes for specific biosensing applications. Particular attention is given to the development of electrochemical MXene-based biosensors, which have shown remarkable sensitivity and selectivity in detecting various analytes. This review then delves into enzymatic MXene-based biosensors, exploring how the integration of MXenes with enzymes enhances sensor performance and expands the range of detectable biomarkers. Optical biosensors based on MXenes are examined, focusing on their mechanisms and applications in both healthcare and environmental monitoring. The potential of fluorescent-based MXene biosensors is also investigated, showcasing their utility in imaging and sensing applications. In addition, MXene-based potential wearable biosensors have been discussed along with the role of MXenes in volatile organic compound (VOC) detection for environmental applications. Finally, this paper concludes with a critical analysis of the current state of MXene-based biosensors and provides insights into future perspectives and challenges in this rapidly evolving field.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100497","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to their unique physicochemical properties, MXenes have emerged as promising materials for biosensing applications. This review paper comprehensively explores the recent advancements in MXene-based biosensors for health and environmental applications. This review begins with an introduction to MXenes and biosensors, outlining various types of biosensors including electrochemical, enzymatic, optical, and fluorescent-based systems. The synthesis methods and characteristics of MXenes are thoroughly discussed, highlighting the importance of these processes in tailoring MXenes for specific biosensing applications. Particular attention is given to the development of electrochemical MXene-based biosensors, which have shown remarkable sensitivity and selectivity in detecting various analytes. This review then delves into enzymatic MXene-based biosensors, exploring how the integration of MXenes with enzymes enhances sensor performance and expands the range of detectable biomarkers. Optical biosensors based on MXenes are examined, focusing on their mechanisms and applications in both healthcare and environmental monitoring. The potential of fluorescent-based MXene biosensors is also investigated, showcasing their utility in imaging and sensing applications. In addition, MXene-based potential wearable biosensors have been discussed along with the role of MXenes in volatile organic compound (VOC) detection for environmental applications. Finally, this paper concludes with a critical analysis of the current state of MXene-based biosensors and provides insights into future perspectives and challenges in this rapidly evolving field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于健康和环境应用的基于 MXene 的生物传感器的最新进展--综述。
由于其独特的物理化学特性,二氧化二烯已成为生物传感应用中大有可为的材料。本综述全面探讨了基于二氧化二烯的生物传感器在健康和环境应用方面的最新进展。综述首先介绍了 MXenes 和生物传感器,概述了各种类型的生物传感器,包括电化学、酶、光学和荧光系统。深入讨论了 MXenes 的合成方法和特性,强调了这些工艺在为特定生物传感应用定制 MXenes 方面的重要性。本综述特别关注基于 MXene 的电化学生物传感器的开发,这些传感器在检测各种分析物方面表现出了卓越的灵敏度和选择性。然后,本综述将深入探讨基于酶的二氧化二烯生物传感器,探讨二氧化二烯与酶的结合如何提高传感器性能并扩大可检测生物标记物的范围。研究还探讨了基于二氧化二烯的光学生物传感器,重点关注其在医疗保健和环境监测方面的机制和应用。还研究了基于荧光的二氧化二烯生物传感器的潜力,展示了它们在成像和传感应用中的实用性。此外,还讨论了基于 MXene 的潜在可穿戴生物传感器,以及 MXene 在环境应用中检测挥发性有机化合物 (VOC) 的作用。最后,本文对基于 MXene 的生物传感器的现状进行了批判性分析,并对这一快速发展领域的未来前景和挑战提出了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1