{"title":"ZnS and Reduced Graphene Oxide Nanocomposite-Based Non-Enzymatic Biosensor for the Photoelectrochemical Detection of Uric Acid.","authors":"Yao Zhao, Niancai Peng, Weizhuo Gao, Fei Hu, Chuanyu Zhang, Xueyong Wei","doi":"10.3390/bios14100488","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we report a study of a zinc sulfide (ZnS) nanocrystal and reduced graphene oxide (RGO) nanocomposite-based non-enzymatic uric acid biosensor. ZnS nanocrystals with different morphologies were synthesized through a hydrothermal method, and both pure nanocrystals and related ZnS/RGO were characterized with SEM, XRD and an absorption spectrum and resistance test. It was found that compared to ZnS nanoparticles, the ZnS nanoflakes had stronger UV light absorption ability at the wavelength of 280 nm of UV light. The RGO significantly enhanced the electron transfer efficiency of the ZnS nanoflakes, which further led to a better photoelectrochemical property of the ZnS/RGO nanocomposites. The ZnS nanoflake/RGO nanocomposite-based biosensor showed an excellent uric acid detecting sensitivity of 534.5 μA·cm<sup>-2</sup>·mM<sup>-1</sup> in the linear range of 0.01 to 2 mM and a detection limit of 0.048 μM. These results will help to improve non-enzymatic biosensor properties for the rapid and accurate clinical detection of uric acid.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506723/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100488","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we report a study of a zinc sulfide (ZnS) nanocrystal and reduced graphene oxide (RGO) nanocomposite-based non-enzymatic uric acid biosensor. ZnS nanocrystals with different morphologies were synthesized through a hydrothermal method, and both pure nanocrystals and related ZnS/RGO were characterized with SEM, XRD and an absorption spectrum and resistance test. It was found that compared to ZnS nanoparticles, the ZnS nanoflakes had stronger UV light absorption ability at the wavelength of 280 nm of UV light. The RGO significantly enhanced the electron transfer efficiency of the ZnS nanoflakes, which further led to a better photoelectrochemical property of the ZnS/RGO nanocomposites. The ZnS nanoflake/RGO nanocomposite-based biosensor showed an excellent uric acid detecting sensitivity of 534.5 μA·cm-2·mM-1 in the linear range of 0.01 to 2 mM and a detection limit of 0.048 μM. These results will help to improve non-enzymatic biosensor properties for the rapid and accurate clinical detection of uric acid.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.