Evaluating and enhancing the robustness of vision transformers against adversarial attacks in medical imaging.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2024-10-25 DOI:10.1007/s11517-024-03226-5
Elif Kanca, Selen Ayas, Elif Baykal Kablan, Murat Ekinci
{"title":"Evaluating and enhancing the robustness of vision transformers against adversarial attacks in medical imaging.","authors":"Elif Kanca, Selen Ayas, Elif Baykal Kablan, Murat Ekinci","doi":"10.1007/s11517-024-03226-5","DOIUrl":null,"url":null,"abstract":"<p><p>Deep neural networks (DNNs) have demonstrated exceptional performance in medical image analysis. However, recent studies have uncovered significant vulnerabilities in DNN models, particularly their susceptibility to adversarial attacks that manipulate these models into making inaccurate predictions. Vision Transformers (ViTs), despite their advanced capabilities in medical imaging tasks, have not been thoroughly evaluated for their robustness against such attacks in this domain. This study addresses this research gap by conducting an extensive analysis of various adversarial attacks on ViTs specifically within medical imaging contexts. We explore adversarial training as a potential defense mechanism and assess the resilience of ViT models against state-of-the-art adversarial attacks and defense strategies using publicly available benchmark medical image datasets. Our findings reveal that ViTs are vulnerable to adversarial attacks even with minimal perturbations, although adversarial training significantly enhances their robustness, achieving over 80% classification accuracy. Additionally, we perform a comparative analysis with state-of-the-art convolutional neural network models, highlighting the unique strengths and weaknesses of ViTs in handling adversarial threats. This research advances the understanding of ViTs robustness in medical imaging and provides insights into their practical deployment in real-world scenarios.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03226-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNNs) have demonstrated exceptional performance in medical image analysis. However, recent studies have uncovered significant vulnerabilities in DNN models, particularly their susceptibility to adversarial attacks that manipulate these models into making inaccurate predictions. Vision Transformers (ViTs), despite their advanced capabilities in medical imaging tasks, have not been thoroughly evaluated for their robustness against such attacks in this domain. This study addresses this research gap by conducting an extensive analysis of various adversarial attacks on ViTs specifically within medical imaging contexts. We explore adversarial training as a potential defense mechanism and assess the resilience of ViT models against state-of-the-art adversarial attacks and defense strategies using publicly available benchmark medical image datasets. Our findings reveal that ViTs are vulnerable to adversarial attacks even with minimal perturbations, although adversarial training significantly enhances their robustness, achieving over 80% classification accuracy. Additionally, we perform a comparative analysis with state-of-the-art convolutional neural network models, highlighting the unique strengths and weaknesses of ViTs in handling adversarial threats. This research advances the understanding of ViTs robustness in medical imaging and provides insights into their practical deployment in real-world scenarios.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估和增强视觉变换器在医学成像中对抗恶意攻击的鲁棒性。
深度神经网络(DNN)在医学图像分析中表现出卓越的性能。然而,最近的研究发现 DNN 模型存在重大漏洞,特别是容易受到对抗性攻击,这些攻击会操纵这些模型做出不准确的预测。尽管视觉变换器(ViTs)在医学成像任务中具有先进的功能,但尚未对其在该领域抵御此类攻击的鲁棒性进行全面评估。本研究针对这一研究空白,广泛分析了医疗成像背景下对视觉变换器的各种对抗性攻击。我们探讨了作为潜在防御机制的对抗性训练,并利用公开的基准医学图像数据集评估了 ViT 模型对最先进的对抗性攻击和防御策略的适应能力。我们的研究结果表明,尽管对抗性训练能显著增强 ViT 的鲁棒性,使其分类准确率达到 80% 以上,但即使是最小的扰动,ViT 也很容易受到对抗性攻击。此外,我们还与最先进的卷积神经网络模型进行了比较分析,突出了 ViT 在处理对抗性威胁方面的独特优势和弱点。这项研究加深了人们对 ViT 在医学成像中的鲁棒性的理解,并为 ViT 在现实世界中的实际应用提供了真知灼见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
Multi-file dynamic compression method based on classification algorithm in DNA storage. Continuous mobile measurement of camptocormia angle using four accelerometers. Modeling and control of COVID-19 disease using deep reinforcement learning method. Left ventricle diastolic vortex ring characterization in ischemic cardiomyopathy: insight into atrio-ventricular interplay. DNN-BP: a novel framework for cuffless blood pressure measurement from optimal PPG features using deep learning model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1