Kavya Phadke, Sergio D'Anna, Estefania Torres Vega, Junhua Xiao, Xianming Lin, Mingliang Zhang, Joseph Sall, Feng-Xia Liang, David S Park, Marina Cerrone, Alicia Lundby, Mario Delmar, Chantal J M van van Opbergen
{"title":"Atrial cardiomyopathy resulting from loss of plakophilin-2 expression: Response to adrenergic stimulation and implications for the exercise response.","authors":"Kavya Phadke, Sergio D'Anna, Estefania Torres Vega, Junhua Xiao, Xianming Lin, Mingliang Zhang, Joseph Sall, Feng-Xia Liang, David S Park, Marina Cerrone, Alicia Lundby, Mario Delmar, Chantal J M van van Opbergen","doi":"10.1113/JP286985","DOIUrl":null,"url":null,"abstract":"<p><p>Atrial arrhythmias occur in 20-40% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) and are associated with an increased risk of sustained ventricular arrhythmias and inappropriate implantable cardioverter-defibrillator shocks. The pathophysiology of atrial arrhythmias in ARVC remains unclear. Most cases of gene-positive ARVC are linked to pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Here, we test the hypothesis that loss of PKP2 expression leads to pro-arrhythmic changes in atrial cardiomyocytes. Atrial cells/tissue were obtained from a cardiac-specific, tamoxifen-activated model of PKP2 deficiency (PKP2cKO). By contrast to PKP2cKO ventricular myocytes, PKP2cKO atrial cardiomyocytes presented no significant differences in intracellular calcium (Ca<sup>2+</sup> <sub>i</sub>) transient dynamics, sarcoplasmic reticulum load or action potential morphology. PKP2cKO atrial cardiomyocytes showed elevated reactive oxygen species levels, increased frequency and amplitude of Ca<sup>2+</sup> sparks, and increased diastolic [Ca<sup>2+</sup>]<sub>i</sub> compared to control; the latter two parameters were further increased by isoproterenol exposure and reversed by exposure to ryanodine receptor blocker dantrolene. We speculate that these isoproterenol-dependent effects may impact on the exercise-related atrial arrhythmia risk in ARVC patients. Despite absence of changes in Ca<sup>2+</sup> <sub>i</sub> transient dynamics, PKP2cKO atrial cardiomyocytes showed enhanced sarcomere shortening and impaired sarcomere relaxation. Orthogonal transcriptomic analysis of human(GTEx) and PKP2cKO atrial tissue led to identification of 41 transcripts depending on PKP2 expression. Biochemical follow-up confirmed reduced abundance of sarcomeric protein myosin binding protein C, potentially playing a role in cellular shortening and relaxation changes observed. Our findings provide novel insights into the role of PKP2 in atrial myocardium with potential implications to therapeutic management of atrial fibrillation in patients with PKP2-related ARVC. KEY POINTS: Atrial arrhythmias occur in a large group of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), a cardiac disease mostly caused by pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Exercise is considered to be an independent risk factor for arrhythmias consequent to PKP2 deficiency. We show that loss of PKP2 expression affects cellular calcium handling and electrophysiology differently in left atrial vs. ventricular myocardium and causes extensive atrial fibrosis. PKP2-deficient atrial cardiomyocytes present increased spontaneous sarcoplasmic reticulum calcium release events, further enhanced by isoproterenol exposure and reversible by a ryanodine receptor blocker (dantrolene). In addition, PKP2-deficient atrial myocytes exhibit impaired relaxation and enhanced sarcomere shortening, most probably related to reduced abundance of myosin binding protein C. We speculate that cellular effects reported upon isoproterenol impact on the exercise-related atrial arrhythmia risk in ARVC patients. We further propose that therapeutic approaches aimed at mitigating ventricular damage may be effective to treat the atrial disease in ARVC.</p>","PeriodicalId":50088,"journal":{"name":"Journal of Physiology-London","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiology-London","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1113/JP286985","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Atrial arrhythmias occur in 20-40% of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) and are associated with an increased risk of sustained ventricular arrhythmias and inappropriate implantable cardioverter-defibrillator shocks. The pathophysiology of atrial arrhythmias in ARVC remains unclear. Most cases of gene-positive ARVC are linked to pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Here, we test the hypothesis that loss of PKP2 expression leads to pro-arrhythmic changes in atrial cardiomyocytes. Atrial cells/tissue were obtained from a cardiac-specific, tamoxifen-activated model of PKP2 deficiency (PKP2cKO). By contrast to PKP2cKO ventricular myocytes, PKP2cKO atrial cardiomyocytes presented no significant differences in intracellular calcium (Ca2+i) transient dynamics, sarcoplasmic reticulum load or action potential morphology. PKP2cKO atrial cardiomyocytes showed elevated reactive oxygen species levels, increased frequency and amplitude of Ca2+ sparks, and increased diastolic [Ca2+]i compared to control; the latter two parameters were further increased by isoproterenol exposure and reversed by exposure to ryanodine receptor blocker dantrolene. We speculate that these isoproterenol-dependent effects may impact on the exercise-related atrial arrhythmia risk in ARVC patients. Despite absence of changes in Ca2+i transient dynamics, PKP2cKO atrial cardiomyocytes showed enhanced sarcomere shortening and impaired sarcomere relaxation. Orthogonal transcriptomic analysis of human(GTEx) and PKP2cKO atrial tissue led to identification of 41 transcripts depending on PKP2 expression. Biochemical follow-up confirmed reduced abundance of sarcomeric protein myosin binding protein C, potentially playing a role in cellular shortening and relaxation changes observed. Our findings provide novel insights into the role of PKP2 in atrial myocardium with potential implications to therapeutic management of atrial fibrillation in patients with PKP2-related ARVC. KEY POINTS: Atrial arrhythmias occur in a large group of patients with arrhythmogenic right ventricular cardiomyopathy (ARVC), a cardiac disease mostly caused by pathogenic variants in the desmosomal gene plakophilin-2 (PKP2). Exercise is considered to be an independent risk factor for arrhythmias consequent to PKP2 deficiency. We show that loss of PKP2 expression affects cellular calcium handling and electrophysiology differently in left atrial vs. ventricular myocardium and causes extensive atrial fibrosis. PKP2-deficient atrial cardiomyocytes present increased spontaneous sarcoplasmic reticulum calcium release events, further enhanced by isoproterenol exposure and reversible by a ryanodine receptor blocker (dantrolene). In addition, PKP2-deficient atrial myocytes exhibit impaired relaxation and enhanced sarcomere shortening, most probably related to reduced abundance of myosin binding protein C. We speculate that cellular effects reported upon isoproterenol impact on the exercise-related atrial arrhythmia risk in ARVC patients. We further propose that therapeutic approaches aimed at mitigating ventricular damage may be effective to treat the atrial disease in ARVC.
期刊介绍:
The Journal of Physiology publishes full-length original Research Papers and Techniques for Physiology, which are short papers aimed at disseminating new techniques for physiological research. Articles solicited by the Editorial Board include Perspectives, Symposium Reports and Topical Reviews, which highlight areas of special physiological interest. CrossTalk articles are short editorial-style invited articles framing a debate between experts in the field on controversial topics. Letters to the Editor and Journal Club articles are also published. All categories of papers are subjected to peer reivew.
The Journal of Physiology welcomes submitted research papers in all areas of physiology. Authors should present original work that illustrates new physiological principles or mechanisms. Papers on work at the molecular level, at the level of the cell membrane, single cells, tissues or organs and on systems physiology are all acceptable. Theoretical papers and papers that use computational models to further our understanding of physiological processes will be considered if based on experimentally derived data and if the hypothesis advanced is directly amenable to experimental testing. While emphasis is on human and mammalian physiology, work on lower vertebrate or invertebrate preparations may be suitable if it furthers the understanding of the functioning of other organisms including mammals.