Janik Fechtelpeter, Christian Rauschenberg, Hamidreza Jalalabadi, Benjamin Boecking, Therese van Amelsvoort, Ulrich Reininghaus, Daniel Durstewitz, Georgia Koppe
{"title":"A control theoretic approach to evaluate and inform ecological momentary interventions","authors":"Janik Fechtelpeter, Christian Rauschenberg, Hamidreza Jalalabadi, Benjamin Boecking, Therese van Amelsvoort, Ulrich Reininghaus, Daniel Durstewitz, Georgia Koppe","doi":"10.1002/mpr.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objectives</h3>\n \n <p>Ecological momentary interventions (EMI) are digital mobile health interventions administered in an individual's daily life to improve mental health by tailoring intervention components to person and context. Experience sampling via ecological momentary assessments (EMA) furthermore provides dynamic contextual information on an individual's mental health state. We propose a personalized data-driven generic framework to select and evaluate EMI based on EMA.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We analyze EMA/EMI time-series from 10 individuals, published in a previous study. The EMA consist of multivariate psychological Likert scales. The EMI are mental health trainings presented on a smartphone. We model EMA as linear dynamical systems (DS) and EMI as perturbations. Using concepts from network control theory, we propose and evaluate three personalized data-driven intervention delivery strategies. Moreover, we study putative change mechanisms in response to interventions.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We identify promising intervention delivery strategies that outperform empirical strategies in simulation. We pinpoint interventions with a high positive impact on the network, at low energetic costs. Although mechanisms differ between individuals - demanding personalized solutions - the proposed strategies are generic and applicable to various real-world settings.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Combined with knowledge from mental health experts, DS and control algorithms may provide powerful data-driven and personalized intervention delivery and evaluation strategies.</p>\n </section>\n </div>","PeriodicalId":50310,"journal":{"name":"International Journal of Methods in Psychiatric Research","volume":"33 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Methods in Psychiatric Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mpr.70001","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
Ecological momentary interventions (EMI) are digital mobile health interventions administered in an individual's daily life to improve mental health by tailoring intervention components to person and context. Experience sampling via ecological momentary assessments (EMA) furthermore provides dynamic contextual information on an individual's mental health state. We propose a personalized data-driven generic framework to select and evaluate EMI based on EMA.
Methods
We analyze EMA/EMI time-series from 10 individuals, published in a previous study. The EMA consist of multivariate psychological Likert scales. The EMI are mental health trainings presented on a smartphone. We model EMA as linear dynamical systems (DS) and EMI as perturbations. Using concepts from network control theory, we propose and evaluate three personalized data-driven intervention delivery strategies. Moreover, we study putative change mechanisms in response to interventions.
Results
We identify promising intervention delivery strategies that outperform empirical strategies in simulation. We pinpoint interventions with a high positive impact on the network, at low energetic costs. Although mechanisms differ between individuals - demanding personalized solutions - the proposed strategies are generic and applicable to various real-world settings.
Conclusions
Combined with knowledge from mental health experts, DS and control algorithms may provide powerful data-driven and personalized intervention delivery and evaluation strategies.
期刊介绍:
The International Journal of Methods in Psychiatric Research (MPR) publishes high-standard original research of a technical, methodological, experimental and clinical nature, contributing to the theory, methodology, practice and evaluation of mental and behavioural disorders. The journal targets in particular detailed methodological and design papers from major national and international multicentre studies. There is a close working relationship with the US National Institute of Mental Health, the World Health Organisation (WHO) Diagnostic Instruments Committees, as well as several other European and international organisations.
MPR aims to publish rapidly articles of highest methodological quality in such areas as epidemiology, biostatistics, generics, psychopharmacology, psychology and the neurosciences. Articles informing about innovative and critical methodological, statistical and clinical issues, including nosology, can be submitted as regular papers and brief reports. Reviews are only occasionally accepted.
MPR seeks to monitor, discuss, influence and improve the standards of mental health and behavioral neuroscience research by providing a platform for rapid publication of outstanding contributions. As a quarterly journal MPR is a major source of information and ideas and is an important medium for students, clinicians and researchers in psychiatry, clinical psychology, epidemiology and the allied disciplines in the mental health field.